Malicious URL Detection Based on Associative Classification

被引:16
|
作者
Kumi, Sandra [1 ]
Lim, ChaeHo [2 ]
Lee, Sang-Gon [1 ]
机构
[1] Dongseo Univ, Dept Informat Secur, Busan 47011, South Korea
[2] BITSCAN Co Ltd, Seoul 04789, South Korea
基金
新加坡国家研究基金会;
关键词
data mining; web security; machine learning; malicious URLs; associative classification;
D O I
10.3390/e23020182
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cybercriminals use malicious URLs as distribution channels to propagate malware over the web. Attackers exploit vulnerabilities in browsers to install malware to have access to the victim's computer remotely. The purpose of most malware is to gain access to a network, ex-filtrate sensitive information, and secretly monitor targeted computer systems. In this paper, a data mining approach known as classification based on association (CBA) to detect malicious URLs using URL and webpage content features is presented. The CBA algorithm uses a training dataset of URLs as historical data to discover association rules to build an accurate classifier. The experimental results show that CBA gives comparable performance against benchmark classification algorithms, achieving 95.8% accuracy with low false positive and negative rates.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Malicious URL Detection based on Machine Learning
    Cho Do Xuan
    Hoa Dinh Nguyen
    Nikolaevich, Tisenko Victor
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (01) : 148 - 153
  • [2] Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification
    Patil, Dharmaraj R.
    Patil, Jayantrao B.
    ISECURE-ISC INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2018, 10 (02): : 141 - 162
  • [3] Learning URL Embedding for Malicious Website Detection
    Yan, Xiaodan
    Xu, Yang
    Cui, Baojiang
    Zhang, Shuhan
    Guo, Taibiao
    Li, Chaoliang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (10) : 6673 - 6681
  • [4] Malicious URL and Intrusion Detection using Machine Learning
    Hamza, Amr
    Hammam, Farah
    Abouzeid, Medhat
    Ahmed, Mohammad Arsalan
    Dhou, Salam
    Aloul, Fadi
    38TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN 2024, 2024, : 795 - 800
  • [5] Structural Analysis of URL For Malicious URL Detection Using Machine Learning
    Raja, A. Saleem
    Peerbasha, S.
    Iqbal, Y. Mohammed
    Sundarvadivazhagan, B.
    Surputheen, M. Mohamed
    JOURNAL OF ADVANCED APPLIED SCIENTIFIC RESEARCH, 2023, 5 (04): : 28 - 41
  • [6] Malicious URL Detection using Logistic Regression
    Chiramdasu, Rupa
    Srivastava, Gautam
    Bhattacharya, Sweta
    Reddy, Praveen Kumar
    Gadekallu, Thippa Reddy
    2021 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2021), 2021, : 33 - 38
  • [7] Malicious url detection using machine learning and ensemble modeling
    Pakhare P.S.
    Krishnan S.
    Charniya N.N.
    Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 839 - 850
  • [8] Towards Fighting Cybercrime: Malicious URL Attack Type Detection using Multiclass Classification
    Manyumwa, Tariro
    Chapita, Phillip Francis
    Wu, Hanlu
    Ji, Shouling
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 1813 - 1822
  • [9] POSTER: A PU Learning based System for Potential Malicious URL Detection
    Zhang, Ya-Lin
    Li, Longfei
    Zhou, Jun
    Li, Xiaolong
    Liu, Yujiang
    Zhang, Yuanchao
    Zhou, Zhi-Hua
    CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2017, : 2599 - 2601
  • [10] Malicious URL Detection Using Machine Learning
    Hani, Dr Raed Bani
    Amoura, Motasem
    Ammourah, Mohammad
    Abu Khalil, Yazeed
    2024 15TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS, ICICS 2024, 2024,