Poisson metrics on flat vector bundles over non-compact curves

被引:9
作者
Collins, Tristan C. [1 ]
Jacob, Adam [2 ]
Yau, Shing-Tung [1 ]
机构
[1] Harvard Univ, Dept Math, 1 Oxford St, Cambridge, MA 02138 USA
[2] Univ Calif Davis, Dept Math, 1 Shields Ave, Davis, CA 95618 USA
关键词
LOGARITHMIC DEGENERATION DATA; CALABI-YAU; MIRROR SYMMETRY;
D O I
10.4310/CAG.2019.v27.n3.a2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (E, del, Pi) -> (M, g) be a flat vector bundle with a parabolic structure over a punctured Riemann surface. We consider a deformation of the harmonic metric equation which we call the Poisson metric equation. This equation arises naturally as the dimension reduction of the Hermitian-Yang-Mills equation for holomorphic vector bundles on K3 surfaces in the large complex structure limit. We define a notion of slope stability, and show that if the flat connection del has regular singularities, and the Riemannian metric g has finite volume then E admits a Poisson metric with asymptotics determined by the parabolic structure if and only if (E, del, Pi) is slope polystable.
引用
收藏
页码:529 / 597
页数:69
相关论文
共 49 条
[1]  
[Anonymous], 1970, Equations differentielles a points singuliers reguliers
[2]  
[Anonymous], 1990, J. Amer. Math. Soc., V3, P713, DOI [10.1090/S0894-0347-1990-1040197-8, DOI 10.2307/1990935]
[3]  
[Anonymous], 1997, Courant Lecture Notes
[4]  
Auroux Denis, 2007, J. Gokova Geom. Topol. GGT, V1, P51
[5]  
Bando S., 1994, Geometry and Analysis on Complex Manifolds, P39
[6]   Flat bundles on affine manifolds [J].
Biswas I. ;
Loftin J. ;
Stemmler M. .
Arabian Journal of Mathematics, 2013, 2 (2) :159-175
[7]  
Biswas I, 2013, J SYMPLECT GEOM, V11, P377
[8]   HERMITIAN-EINSTEIN CONNECTIONS ON PRINCIPAL BUNDLES OVER FLAT AFFINE MANIFOLDS [J].
Biswas, Indranil ;
Loftin, John .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (04)
[9]  
Chan K, 2012, J DIFFER GEOM, V90, P177
[10]  
Cheng S.-Y., 1980, P 1980 BEJ S DIFF GE, V2, P229