A comparison of two global datasets of extreme sea levels and resulting flood exposure

被引:75
作者
Muis, Sanne [1 ]
Verlaan, Martin [2 ,3 ]
Nicholls, Robert J. [4 ,5 ]
Brown, Sally [4 ,5 ]
Hinkel, Jochen [6 ,7 ,8 ]
Lincke, Daniel [6 ]
Vafeidis, Athanasios T. [9 ]
Scussolini, Paolo [1 ]
Winsemius, Hessel C. [2 ]
Ward, Philip J. [1 ]
机构
[1] Vrije Univ Amsterdam, Inst Environm Studies IVM, Amsterdam, Netherlands
[2] Deltares, Delft, Netherlands
[3] Delft Tech Univ, EEMCS, Math Phys, Delft, Netherlands
[4] Univ Southampton, Fac Engn & Environm, Southampton, Hants, England
[5] Tyndall Ctr Climate Change Res, Southampton, Hants, England
[6] Global Climate Forum, Dept Adaptat & Social Learning, Berlin, Germany
[7] Humboldt Univ, Albrecht Daniel Thaer Inst, Div Resource Econ, Berlin, Germany
[8] Humboldt Univ, Berlin Workshop Inst Anal Social Ecol Syst WINS, Berlin, Germany
[9] Univ Kiel, Inst Geog, Kiel, Germany
基金
欧盟地平线“2020”;
关键词
CLIMATE-CHANGE; STORM-SURGE; COASTAL; 21ST-CENTURY; IMPACTS; RECORD; RISK;
D O I
10.1002/2016EF000430
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Estimating the current risk of coastal flooding requires adequate information on extreme sea levels. For over a decade, the only global data available was the DINAS-COAST Extreme Sea Levels (DCESL) dataset, which applies a static approximation to estimate extreme sea levels. Recently, a dynamically derived dataset was developed: the Global Tide and Surge Reanalysis (GTSR) dataset. Here, we compare the two datasets. The differences between DCESL and GTSR are generally larger than the confidence intervals of GTSR. Compared to observed extremes, DCESL generally overestimates extremes with a mean bias of 0.6m. With a mean bias of -0.2m GTSR generally underestimates extremes, particularly in the tropics. The Dynamic Interactive Vulnerability Assessment model is applied to calculate the present-day flood exposure in terms of the land area and the population below the 1 in 100-year sea levels. Global exposed population is 28% lower when based on GTSR instead of DCESL. Considering the limited data available at the time, DCESL provides a good estimate of the spatial variation in extremes around the world. However, GTSR allows for an improved assessment of the impacts of coastal floods, including confidence bounds. We further improve the assessment of coastal impacts by correcting for the conflicting vertical datum of sea-level extremes and land elevation, which has not been accounted for in previous global assessments. Converting the extreme sea levels to the same vertical reference used for the elevation data is shown to be a critical step resulting in 39-59% higher estimate of population exposure.
引用
收藏
页码:379 / 392
页数:14
相关论文
共 56 条
[1]   A new catalogue of tropical cyclones of the northern Bay of Bengal and the distribution and effects of selected landfalling events in Bangladesh [J].
Alam, Edris ;
Dominey-Howes, Dale .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2015, 35 (06) :801-835
[2]   Climate change impacts and adaptation assessment in Bangladesh [J].
Ali, A .
CLIMATE RESEARCH, 1999, 12 (2-3) :109-116
[3]  
[Anonymous], ENCY COASTAL SCI
[4]  
[Anonymous], 1990, CZM WORKSH PERTH AUS
[5]   Spatial variations of sea-level rise and impacts: An application of DIVA [J].
Brown, Sally ;
Nicholls, Robert J. ;
Lowe, Jason A. ;
Hinkel, Jochen .
CLIMATIC CHANGE, 2016, 134 (03) :403-416
[6]  
Carrere L., 2012, 20 YEARS PROGR RADAR, P6
[7]  
Center for International Earth Science Information Network (CIESIN) Columbia University International Food Policy Research Institute (IFPRI) The World Bank and Centro Internacional de Agricultura Tropical (CIAT), 2011, GLOB RUR URB MAPP PR, DOI [10.7927/H4GH9FVG, DOI 10.7927/H4GH9FVG]
[8]   Global reconstructed daily surge levels from the 20th Century Reanalysis (1871-2010) [J].
Cid, Alba ;
Camus, Paula ;
Castanedo, Sonia ;
Mendez, Fernando J. ;
Medina, Raul .
GLOBAL AND PLANETARY CHANGE, 2017, 148 :9-21
[9]   North Sea Storminess from a Novel Storm Surge Record since AD 1843 [J].
Dangendorf, Soenke ;
Mueller-Navarra, Sylvin ;
Jensen, Juergen ;
Schenk, Frederik ;
Wahl, Thomas ;
Weisse, Ralf .
JOURNAL OF CLIMATE, 2014, 27 (10) :3582-3595
[10]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597