WKB theory of epidemic fade-out in stochastic populations

被引:25
作者
Meerson, Baruch [1 ]
Sasorov, Pavel V. [2 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[2] Inst Theoret & Expt Phys, Moscow 117218, Russia
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 04期
基金
以色列科学基金会;
关键词
diseases; probability; stochastic processes;
D O I
10.1103/PhysRevE.80.041130
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Stochastic effects may cause "fade-out" of an infectious disease in a population immediately after an epidemic outbreak. We evaluate the epidemic fade-out probability by a WKB method and find that the most probable path to extinction of the disease comes from an instantonlike orbit in the phase space of an underlying Hamiltonian flow.
引用
收藏
页数:4
相关论文
共 11 条
  • [1] ANDERSON R M, 1991
  • [2] Bailey N. T. J, 1975, The Mathematical Theory of Infectious Diseases and its Applications
  • [3] Bartlett M.S., 1961, Stochastic Population Models in Ecology and Epidemiology
  • [4] LARGE FLUCTUATIONS AND OPTIMAL PATHS IN CHEMICAL-KINETICS
    DYKMAN, MI
    MORI, E
    ROSS, J
    HUNT, PM
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (08) : 5735 - 5750
  • [5] Gardiner C.W., 2004, Springer Series in Synergetics, VVolume 13
  • [6] Decay of the metastable state in a chemical system: Different predictions between discrete and continuous models
    Gaveau, B
    Moreau, M
    Toth, J
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1996, 37 (03) : 285 - 292
  • [7] Extinction of an infectious disease: A large fluctuation in a nonequilibrium system
    Kamenev, Alex
    Meerson, Baruch
    [J]. PHYSICAL REVIEW E, 2008, 77 (06):
  • [8] Kubo R., 1973, Journal of Statistical Physics, V9, P51, DOI DOI 10.1007/BF01016797
  • [9] Rajaraman R., 1987, SOLITONS INSTANTONS
  • [10] van Kampen N.G., 2001, Stochastic Processes in Physics and Chemistry