Logarithmic corrections to finite-size spectrum of SU(N) symmetric quantum chains

被引:9
作者
Majumdar, K [1 ]
Mukherjee, M
机构
[1] Berea Coll, Dept Phys, Berea, KY 40404 USA
[2] Miami Univ, Dept Phys, Oxford, OH 45056 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 38期
关键词
D O I
10.1088/0305-4470/35/38/101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider SU (N) symmetric one-dimensional quantum chains at finite temperature. For such systems the correlation lengths, ground state energy and excited state energies are investigated in the framework of conformal field theory. The possibility of different types of excited states is discussed. Logarithmic corrections to the ground state energy and different types of excited states in the presence of a marginal operator are calculated. The known results for SU (2) and SU (4) symmetric systems follow from our general formula.
引用
收藏
页码:L543 / L549
页数:7
相关论文
共 23 条
[1]   CRITICAL-BEHAVIOR OF SPIN-S HEISENBERG ANTIFERROMAGNETIC CHAINS - ANALYTIC AND NUMERICAL RESULTS [J].
AFFLECK, I ;
GEPNER, D ;
SCHULZ, HJ ;
ZIMAN, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :511-529
[2]   CRITICAL-BEHAVIOR OF TWO-DIMENSIONAL SYSTEMS WITH CONTINUOUS SYMMETRIES [J].
AFFLECK, I .
PHYSICAL REVIEW LETTERS, 1985, 55 (13) :1355-1358
[3]   Exact correlation amplitude for the S=1/2 Heisenberg antiferromagnetic chain [J].
Affleck, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (20) :4573-4581
[4]   LARGE-N LIMIT OF SU(N) QUANTUM SPIN CHAINS [J].
AFFLECK, I .
PHYSICAL REVIEW LETTERS, 1985, 54 (10) :966-969
[5]   EXACT CRITICAL EXPONENTS FOR QUANTUM SPIN CHAINS, NONLINEAR SIGMA-MODELS AT THETA=PI AND THE QUANTUM HALL-EFFECT [J].
AFFLECK, I .
NUCLEAR PHYSICS B, 1986, 265 (03) :409-447
[6]  
AFFLECK I, 1989, HOUCHES SESSION 49 C
[7]   One-dimensional SU(4) spin-orbital model: A low-energy effective theory [J].
Azaria, P ;
Gogolin, AO ;
Lecheminant, P ;
Nersesyan, AA .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :624-627
[8]   Effect of symmetry-breaking perturbations in the one-dimensional SU(4) spin-orbital model [J].
Azaria, P ;
Boulat, E ;
Lecheminant, P .
PHYSICAL REVIEW B, 2000, 61 (18) :12112-12125
[9]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[10]   CONFORMAL-INVARIANCE AND SURFACE CRITICAL-BEHAVIOR [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1984, 240 (04) :514-532