共 96 条
Transcriptional Regulation of Genes Involved in Zinc Uptake, Sequestration and Redistribution Following Foliar Zinc Application to Medicago sativa
被引:17
作者:
Cardini, Alessio
[1
]
Pellegrino, Elisa
[1
]
White, Philip J.
[2
]
Mazzolai, Barbara
[3
]
Mascherpa, Marco C.
[4
]
Ercoli, Laura
[1
]
机构:
[1] Scuola Super Sant Anna, Inst Life Sci, I-56127 Pisa, Italy
[2] James Hutton Inst, Dept Ecol Sci, Dundee DD2 5DA, Scotland
[3] Ist Italiano Tecnol, Ctr Microbiorobot, I-56025 Pontedera, Italy
[4] Natl Res Council CNR, Ist Chim Composti Organo Met, I-56124 Pisa, Italy
来源:
PLANTS-BASEL
|
2021年
/
10卷
/
03期
关键词:
ZIP transporters;
nicotianamine;
metal tolerance protein (MTP);
yellow stripe-like protein (YSL);
zinc-induced facilitators (ZIF);
heavy metal transporters (HMA);
ARABIDOPSIS-THALIANA;
ZIP FAMILY;
METAL TRANSPORTERS;
ZN DEFICIENCY;
HUMAN HEALTH;
IRON;
EXPRESSION;
NICOTIANAMINE;
HOMEOSTASIS;
IDENTIFICATION;
D O I:
10.3390/plants10030476
中图分类号:
Q94 [植物学];
学科分类号:
071001 ;
摘要:
Zinc (Zn) is an essential micronutrient for plants and animals, and Zn deficiency is a widespread problem for agricultural production. Although many studies have been performed on biofortification of staple crops with Zn, few studies have focused on forages. Here, the molecular mechanisms of Zn transport in alfalfa (Medicago sativa L.) were investigated following foliar Zn applications. Zinc uptake and redistribution between shoot and root were determined following application of six Zn doses to leaves. Twelve putative genes encoding proteins involved in Zn transport (MsZIP1-7, MsZIF1, MsMTP1, MsYSL1, MsHMA4, and MsNAS1) were identified and changes in their expression following Zn application were quantified using newly designed RT-qPCR assays. These assays are the first designed specifically for alfalfa and resulted in being more efficient than the ones already available for Medicago truncatula (i.e., MtZIP1-7 and MtMTP1). Shoot and root Zn concentration was increased following foliar Zn applications >= 0.1 mg plant(-1). Increased expression of MsZIP2, MsHMA4, and MsNAS1 in shoots, and of MsZIP2 and MsHMA4 in roots was observed with the largest Zn dose (10 mg Zn plant(-1)). By contrast, MsZIP3 was downregulated in shoots at Zn doses >= 0.1 mg plant(-1). Three functional gene modules, involved in Zn uptake by cells, vacuolar Zn sequestration, and Zn redistribution within the plant, were identified. These results will inform genetic engineering strategies aimed at increasing the efficiency of crop Zn biofortification.
引用
收藏
页码:1 / 19
页数:19
相关论文