New geometric flows

被引:0
作者
Tian, Gang [1 ,2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Ricci flow; metrics; AMMP; Kahler; Hermitian; symplectic; KAHLER-RICCI FLOW; PLURICLOSED FLOW; MANIFOLDS; SURFACES;
D O I
10.1093/nsr/nww053
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This is an expository paper on geometric flows. I will start with a brief tour on Ricci flow, then I will discuss two geometric flows introduced in my joint work with J. Streets and some recent works on them.
引用
收藏
页码:534 / 541
页数:8
相关论文
共 26 条
  • [1] [Anonymous], 1997, Three-dimensional geometry and topology
  • [2] [Anonymous], ARXIV14050727
  • [3] Bamler R, ARXIV14116658
  • [4] A note on uniformization of Riemann surfaces by Ricci flow
    Chen, Xiuxiong
    Lu, Peng
    Tian, Gang
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (11) : 3391 - 3393
  • [5] THE RICCI FLOW ON THE 2-SPHERE
    CHOW, B
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (02) : 325 - 334
  • [6] Width and finite extinction time of Ricci flow
    Colding, Tobias H.
    Minicozzi, William P., II
    [J]. GEOMETRY & TOPOLOGY, 2008, 12 : 2537 - 2586
  • [7] Hamilton R. S., 1988, Contemp Math, V71, P237, DOI DOI 10.1090/CONM/071/954419
  • [8] HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
  • [9] KNESER H., 1929, JBER DTSCH MATH VERE, V38, P248
  • [10] Morgan J, 2007, CLAY MATH MONOGRAPHS, V3, P521