Dendrite growth in undercooled Al-rich Al-Ni melts measured on Earth and in Space

被引:10
作者
Herlach, D. M. [1 ,2 ,3 ]
Burggraf, S. [1 ,2 ]
Reinartz, M. [3 ]
Galenko, P. K. [3 ]
Rettenmayr, M. [3 ]
Gandin, Ch-A [4 ]
Henein, H. [5 ]
Mullis, A. [6 ]
Ilbagi, A. [5 ]
Valloton, J. [5 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Mat Phys Weltraum, D-51170 Cologne, Germany
[2] Ruhr Univ, Inst Expt Phys 4, D-44780 Bochum, Germany
[3] Friedrich Schiller Univ, Otto Schott Inst Mat Forsch, D-07743 Jena, Germany
[4] MINES ParisTech, Ctr Mise Forme Mat, F-06904 Sophia Antipolis, France
[5] Univ Alberta, Adv Mat & Proc Lab, Edmonton, AB T6G 1H9, Canada
[6] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
关键词
SHORT-RANGE ORDER; SOLIDIFICATION; ALLOYS; GLASS;
D O I
10.1103/PhysRevMaterials.3.073402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dendrite growth velocity in Al75Ni25 melts has been measured in a containerless procedure as a function of undercooling using an electromagnetic levitation technique both in the Earth laboratory and in Space on board the International Space Station. The growth shows an anomalous behavior inasmuch as the growth velocity decreases with increasing undercooling, confirming previous experiments on Earth. Within the scatter of experimental data, results obtained on Earth and in Space do not show significant differences. Thus, convection effects as the origin of the anomalous growth characteristics can be excluded. However, high-speed video recording exhibits multiple nucleation events in front of the growing solid-liquid interface. This effect is identified as the origin of the anomalous dendrite growth characteristics in undercooled melts of Al-rich Al-Ni melts.
引用
收藏
页数:7
相关论文
共 26 条
[1]  
[Anonymous], 2010, NUCL CONDENSED MATTE
[2]   Solidification microstructures and solid-state parallels: Recent developments, future directions [J].
Asta, M. ;
Beckermann, C. ;
Karma, A. ;
Kurz, W. ;
Napolitano, R. ;
Plapp, M. ;
Purdy, G. ;
Rappaz, M. ;
Trivedi, R. .
ACTA MATERIALIA, 2009, 57 (04) :941-971
[3]   Solidification of tetragonal Ni2B from the undercooled melt [J].
Binder, S. ;
Kolbe, M. ;
Klein, S. ;
Herlach, D. M. .
EPL, 2012, 97 (03)
[4]   REVERSIBLE AMORPHIZATION IN LASER-QUENCHED TITANIUM-ALLOYS [J].
BLATTER, A ;
VONALLMEN, M .
PHYSICAL REVIEW LETTERS, 1985, 54 (19) :2103-2106
[5]   Three dimensional thermal-solute phase field simulation of binary alloy solidification [J].
Bollada, P. C. ;
Goodyer, C. E. ;
Jimack, P. K. ;
Mullis, A. M. ;
Yang, F. W. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 287 :130-150
[6]   Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions [J].
Galenko, PK ;
Danilov, DA .
JOURNAL OF CRYSTAL GROWTH, 1999, 197 (04) :992-1002
[7]   THE THERMODYNAMICS OF INVERSE MELTING [J].
GREER, AL .
JOURNAL OF THE LESS-COMMON METALS, 1988, 140 :327-334
[8]   Evidence of the transition from ordered to disordered growth during rapid solidification of an intermetallic phase [J].
Hartmann, H. ;
Holland-Moritz, D. ;
Galenko, P. K. ;
Herlach, D. M. .
EPL, 2009, 87 (04)
[9]  
HERLACH D, 2007, PERGAMON MAT SERIES
[10]   Solidification of Undercooled Melts of Al-Based Alloys on Earth and in Space [J].
Herlach, Dieter M. ;
Burggraf, Stefan ;
Galenko, Peter ;
Gandin, Charles-Andre ;
Garcia-Escorial, Asuncion ;
Henein, Hani ;
Karrasch, Christian ;
Mullis, Andrew ;
Rettenmayr, Markus ;
Valloton, Jonas .
JOM, 2017, 69 (08) :1303-1310