Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants

被引:141
作者
Lu, CM [1 ]
Zhang, JH [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Biol, Kowloon Tong, Hong Kong, Peoples R China
关键词
chlorophyll fluorescence; nitrogen deficiency; photoinhibition; PSII photochemistry; Zea mays;
D O I
10.1016/S0168-9452(99)00207-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Effects of nitrogen deficiency on photosynthetic CO2 assimilation, PSII photochemistry and photoinhibition were investigated in maize plants grown under natural illumination. Nitrogen-deficient plants had a significantly smaller CO2 assimilatory capacity, but they showed little changes in the maximal efficiency of PSII photochemistry, the rate of Q(A) reduction and the heterogeneity of PSII reaction centers, suggesting that nitrogen deficiency had little effects on PSII primary photochemistry and photoinhibition even under natural illumination. However, modifications in PSII photochemistry under the steady state of photosynthesis induced by nitrogen deficiency were observed. This is reflected in decreases in the quantum yield of PSII electron transport, the efficiency of excitation energy capture by open PSII reaction centers, and the photochemical quenching coefficient and an increase in the non-photochemical quenching coefficient. These results suggest that modifications of PSII photochemistry under the steady state of photosynthesis may be a mechanism to downregulate photosynthetic electron transport so that production of ATP and NADPH would be in equilibrium with the decreased demand in the Calvin cycle in nitrogen-deficient plants. On the other hand, the nitrogen-deficient plants still exhibited increased susceptibility to photoinhibition when exposed to very high irradiance, although nitrogen deficiency induced no photoinhibition under natural illumination. Our results suggest that such increased susceptibility to photoinhibition was associated with the increased accumulation of inactivated PSII reaction centers, the decreased capacity of non-photochemical quenching, and the increased fraction of the reduction state of Q(A). (C) 2000 Published by Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:135 / 143
页数:9
相关论文
共 34 条
[1]  
[Anonymous], PHOTOSYSTEMS STRUCTU
[2]   A FUNCTIONAL-MODEL FOR THE ROLE OF CYTOCHROME-B(559) IN THE PROTECTION AGAINST DONOR AND ACCEPTOR SIDE PHOTOINHIBITION [J].
BARBER, J ;
RIVAS, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (23) :10942-10946
[3]   TOO MUCH OF A GOOD THING - LIGHT CAN BE BAD FOR PHOTOSYNTHESIS [J].
BARBER, J ;
ANDERSSON, B .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (02) :61-66
[4]  
BRADBURY M, 1981, BIOCHIM BIOPHYS ACTA, V63, P542
[5]   Effects of nitrogen on the photosynthetic apparatus of Clematis vitalba grown at several irradiances [J].
Bungard, RA ;
McNeil, D ;
Morton, JD .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1997, 24 (02) :205-214
[6]   CHLOROPHYLL-A FLUORESCENCE TRANSIENT AS AN INDICATOR OF ACTIVE AND INACTIVE PHOTOSYSTEM-II IN THYLAKOID MEMBRANES [J].
CAO, J ;
GOVINDJEE .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1015 (02) :180-188
[7]   INACTIVE PHOTOSYSTEM-II COMPLEXES IN LEAVES - TURNOVER RATE AND QUANTITATION [J].
CHYLLA, RA ;
WHITMARSH, J .
PLANT PHYSIOLOGY, 1989, 90 (02) :765-772
[8]   Xanthophyll cycle and light stress in nature: Uniform response to excess direct sunlight among higher plant species [J].
DemmigAdams, B ;
Adams, WW .
PLANTA, 1996, 198 (03) :460-470
[9]   Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation [J].
DemmigAdams, B ;
Adams, WW ;
Barker, DH ;
Logan, BA ;
Bowling, DR ;
Verhoeven, AS .
PHYSIOLOGIA PLANTARUM, 1996, 98 (02) :253-264
[10]   EFFECTS OF NITROGEN NUTRITION ON ELECTRON-TRANSPORT COMPONENTS AND PHOTOSYNTHESIS IN SPINACH [J].
EVANS, JR ;
TERASHIMA, I .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1987, 14 (01) :59-68