Regularity of Relaxed Minimizers of Quasiconvex Variational Integrals with (p, q)-growth

被引:52
作者
Schmidt, Thomas [1 ]
机构
[1] Univ Dusseldorf, Math Inst, D-40225 Dusseldorf, Germany
关键词
MULTIPLE INTEGRALS; LOWER SEMICONTINUITY; GROWTH EXPONENT; SINGULAR SET; FUNCTIONALS; CALCULUS; RELAXATION; QUASICONVEXITY; ELASTICITY; EXISTENCE;
D O I
10.1007/s00205-008-0162-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider autonomous integrals F[u] := integral(Omega) f(Du) dx for u : R(n) superset of Omega -> R(N) in the multidimensional calculus of variations, where the integrand f is a strictly quasiconvex C(2)-function satisfying the (p, q)-growth conditions. gamma|A|(p) <= f (A) <= Gamma(1 + |A|(q)) for every A is an element of R(nN) with exponents 1 < p <= q < infinity. We examine the Lebesgue - Serrin extension F(loc)[u] := inf{lim inf(k-->infinity) F[u(k)] : W(loc)(1,q) (sic) u(k) -> (k ->infinity) u weakly in W(1, p)} of F and establish an existence result for minimizers of F(loc). Furthermore, we prove a corresponding partial C(1,alpha)-regularity theorem for q < p+min{2, p}/2n, which is the first regularity result for this class of integrands.
引用
收藏
页码:311 / 337
页数:27
相关论文
共 41 条
[1]   NEW LOWER SEMICONTINUITY RESULTS FOR POLYCONVEX INTEGRALS [J].
ACERBI, E ;
DALMASO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (03) :329-372
[2]  
ACERBI E, 1987, ARCH RATION MECH AN, V99, P261
[3]   REGULARITY FOR MINIMIZERS OF NON-QUADRATIC FUNCTIONALS - THE CASE 1-LESS-THAN-P-LESS-THAN-2 [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (01) :115-135
[4]   PARTIAL REGULARITY UNDER ANISOTROPIC (P, Q) GROWTH-CONDITIONS [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (01) :46-67
[5]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[6]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[7]  
[Anonymous], 2006, Applications of mathematics, DOI DOI 10.1007/S10778-006-0110-3
[8]  
[Anonymous], 1977, Theory of Nonlinear Operators (Proc. Fourth Internat. Summer School, Acad. Sci. Berlin, 1975), in: Abh. Akad. Wiss. DDR Abt. Math.-Natur.-Tech. Jahrgang 1977
[9]  
[Anonymous], 2001, Ann. Scuola Norm. Sup. Pisa Cl. Sci
[10]  
[Anonymous], 1989, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, DOI DOI 10.1007/978-3-642-51440-1