Bayesian Poroelastic Aquifer Characterization From InSAR Surface Deformation Data. Part I: Maximum A Posteriori Estimate

被引:20
作者
Alghamdi, Amal [1 ]
Hesse, Marc A. [1 ,2 ]
Chen, Jingyi [2 ,3 ]
Ghattas, Omar [1 ,2 ,4 ]
机构
[1] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Texas Austin, Geol Sci, Austin, TX 78712 USA
[3] Univ Texas Austin, Aerosp Engn & Engn Mech, Austin, TX 78712 USA
[4] Univ Texas Austin, Mech Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Aquifer characterization; Geodesy; Bayesian Inference; InSAR; Inversion; Hydrogeology; STEADY-STATE CONDITIONS; GLOBAL WATER-RESOURCES; STOCHASTIC NEWTON MCMC; SAN-LUIS VALLEY; INVERSE PROBLEMS; 3-DIMENSIONAL DEFORMATION; STORAGE PROPERTIES; SUBSIDENCE; MODEL; PRESSURE;
D O I
10.1029/2020WR027391
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Characterizing the properties of groundwater aquifers is essential for predicting aquifer response and managing groundwater resources. In this work, we develop a high-dimensional scalable Bayesian inversion framework governed by a three-dimensional quasi-static linear poroelastic model to characterize lateral permeability variations in groundwater aquifers. We determine the maximum a posteriori (MAP) point of the posterior permeability distribution from centimeter-level surface deformation measurements obtained from Interferometric Synthetic Aperture Radar (InSAR). The scalability of our method to high parameter dimension is achieved through the use of adjoint-based derivatives, inexact Newton methods to determine the MAP point, and a Matern class sparse prior precision operator. Together, these guarantee that the MAP point is found at a cost, measured in number of forward/adjoint poroelasticity solves, that is independent of the parameter dimension. We apply our methodology to a test case for a municipal well in Mesquite, Nevada, in which InSAR and GPS surface deformation data are available. We solve problems with up to 320,824 state variable degrees of freedom (DOFs) and 16,896 parameter DOFs. A consistent treatment of noise level is employed so that the aquifer characterization result does not depend on the pixel spacing of surface deformation data. Our results show that the use of InSAR data significantly improves characterization of lateral aquifer heterogeneity, and the InSAR-based aquifer characterization recovers complex lateral displacement trends observed by independent daily GPS measurements.
引用
收藏
页数:26
相关论文
共 82 条
  • [1] Mean-Variance Risk-Averse Optimal Control of Systems Governed by PDEs with Random Parameter Fields Using Quadratic Approximations
    Alexanderian, Alen
    Petra, Noemi
    Stadler, Georg
    Ghattas, Omar
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 1166 - 1192
  • [2] A FAST AND SCALABLE METHOD FOR A-OPTIMAL DESIGN OF EXPERIMENTS FOR INFINITE-DIMENSIONAL BAYESIAN NONLINEAR INVERSE PROBLEMS
    Alexanderian, Alen
    Petra, Noemi
    Stadler, Georg
    Ghattas, Omar
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01) : A243 - A272
  • [3] A-OPTIMAL DESIGN OF EXPERIMENTS FOR INFINITE-DIMENSIONAL BAYESIAN LINEAR INVERSE PROBLEMS WITH REGULARIZED l0-SPARSIFICATION
    Alexanderian, Alen
    Petra, Noemi
    Stadler, Georg
    Ghattas, Omar
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05) : A2122 - A2148
  • [4] Alnas M.S., 2012, Automated Solution of Differential Equations by the Finite Element Method, P273, DOI 10.1007/978-3-642-23099-8
  • [5] Amelung F, 1999, GEOLOGY, V27, P483, DOI 10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO
  • [6] 2
  • [7] [Anonymous], 2020, SENTINEL 1
  • [8] [Anonymous], 2020, ISRO SAR MISS NISAR
  • [9] Hessian-based model reduction for large-scale systems with initial-condition inputs
    Bashir, O.
    Willcox, K.
    Ghattas, O.
    Waanders, B. van Bloemen
    Hill, J.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 73 (06) : 844 - 868
  • [10] The role of subglacial water in ice-sheet mass balance
    Bell, Robin E.
    [J]. NATURE GEOSCIENCE, 2008, 1 (05) : 297 - 304