AN EXPONENTIAL TURNPIKE THEOREM FOR DISSIPATIVE DISCRETE TIME OPTIMAL CONTROL PROBLEMS

被引:98
作者
Damm, Tobias [1 ]
Gruene, Lars [2 ]
Stieler, Marleen [2 ]
Worthmann, Karl [3 ]
机构
[1] Tech Univ Kaiserslautern, Math Inst, D-67653 Kaiserslautern, Germany
[2] Univ Bayreuth, Math Inst, D-95440 Bayreuth, Germany
[3] Tech Univ Ilmenau, Inst Math, D-98693 Ilmenau, Germany
关键词
turnpike property; optimal control; dissipativity; stabilizability; controllability; model predictive control; NONLINEAR MPC SCHEMES; DYNAMICAL-SYSTEMS; HORIZON; EQUILIBRIUM; MODEL;
D O I
10.1137/120888934
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the exponential turnpike property for finite horizon undiscounted discrete time optimal control problems without any terminal constraints. Considering a class of strictly dissipative systems, we derive a boundedness condition for an auxiliary optimal value function which implies the exponential turnpike property. Two theorems illustrate how this boundedness condition can be concluded from structural properties like controllability and stabilizability of the control system under consideration.
引用
收藏
页码:1935 / 1957
页数:23
相关论文
共 28 条
[1]   Stochastic version of Polterovich's model: Exponential turnpike theorems for equilibrium paths [J].
Amir, R ;
Evstigneev, I .
MACROECONOMIC DYNAMICS, 1999, 3 (02) :149-166
[2]   Economic optimization using model predictive control with a terminal cost [J].
Amrit, Rishi ;
Rawlings, James B. ;
Angeli, David .
ANNUAL REVIEWS IN CONTROL, 2011, 35 (02) :178-186
[3]   OPTIMAL-CONTROL PROBLEMS OVER LARGE TIME INTERVALS [J].
ANDERSON, BDO ;
KOKOTOVIC, PV .
AUTOMATICA, 1987, 23 (03) :355-363
[4]  
ANGELI D., 2010, P 8 IFAC S NONL CONT, P1217
[5]   Receding horizon cost optimization for overly constrained nonlinear plants [J].
Angeli, David ;
Amrit, Rishi ;
Rawlings, James B. .
PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, :7972-7977
[6]   AN INTEGRATION OF EQUILIBRIUM-THEORY AND TURNPIKE-THEORY [J].
BEWLEY, T .
JOURNAL OF MATHEMATICAL ECONOMICS, 1982, 10 (2-3) :233-267
[7]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[8]  
Carlson D. A., 1991, Infinite Horizon Optimal Control-Deterministic and Stochastic Systems, V2nd
[10]   A Lyapunov Function for Economic Optimizing Model Predictive Control [J].
Diehl, Moritz ;
Amrit, Rishi ;
Rawlings, James B. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (03) :703-707