Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy

被引:272
作者
Diguet, Nicolas [1 ]
Trammell, Samuel A. J. [2 ]
Tannous, Cynthia [1 ,3 ]
Deloux, Robin [1 ,3 ]
Piquereau, Jerome [3 ]
Mougenot, Nathalie [4 ]
Gouge, Anne [1 ]
Gressette, Melanie [3 ]
Manoury, Boris [3 ]
Blanc, Jocelyne [1 ]
Breton, Marie [3 ]
Decaux, Jean-Francois [1 ]
Lavery, Gareth G. [5 ]
Baczko, Istvan [6 ]
Zoll, Joffrey [7 ,8 ]
Garnier, Anne [3 ]
Li, Zhenlin [1 ]
Brenner, Charles [2 ]
Mericskay, Mathias [3 ]
机构
[1] Univ Pierre & Marie Curie Paris 6, Sorbonne Univ, Dept Biol Adaptat & Ageing, CNRS,UMR8256,INSERM,U1164,Inst Biol Paris Seine,D, Paris, France
[2] Univ Iowa, Dept Biochem, Carver Coll Med, Iowa City, IA 52242 USA
[3] Univ Paris Saclay, Signalling & Cardiovasc Pathophysiol, UMR S 1180, Univ Paris Sud,INSERM, Chatenay Malabry, France
[4] Univ Pierre & Marie Curie Paris 6, Plateforme PECMV, Sorbonne Univ, UMS28, Paris, France
[5] Univ Birmingham, Inst Metab & Syst Res, Birmingham, W Midlands, England
[6] Univ Szeged, Dept Pharmacol & Pharmacotherapy, Szeged, Hungary
[7] Univ Strasbourg, Physiol Dept, Fac Med, Strasbourg, France
[8] Univ Strasbourg, EA3072, Strasbourg, France
基金
英国惠康基金;
关键词
acetyl coenzyme A; cardiomyopathy; dilated; energy metabolism; glycolysis; heart failure; NAD; nicotinamide-beta-riboside; serum response factor; HEART-FAILURE; NAD(+) METABOLISM; FAILING HEART; ADULT HEART; CELL-DEATH; LIFE-SPAN; ACTIVATION; PROTEIN; MICE; ACETYLATION;
D O I
10.1161/CIRCULATIONAHA.116.026099
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: Myocardial metabolic impairment is a major feature in chronic heart failure. As the major coenzyme in fuel oxidation and oxidative phosphorylation and a substrate for enzymes signaling energy stress and oxidative stress response, nicotinamide adenine dinucleotide NAD(+) is emerging as a metabolic target in a number of diseases including heart failure. Little is known on the mechanisms regulating homeostasis of NAD(+) in the failing heart. METHODS: To explore possible alterations of NAD(+) homeostasis in the failing heart, we quantified the expression of NAD(+) biosynthetic enzymes in the human failing heart and in the heart of a mouse model of dilated cardiomyopathy (DCM) triggered by Serum Response Factor transcription factor depletion in the heart (SRFHKO) or of cardiac hypertrophy triggered by transverse aorta constriction. We studied the impact of NAD(+) precursor supplementation on cardiac function in both mouse models. RESULTS: We observed a 30% loss in levels of NAD(+) in the murine failing heart of both DCM and transverse aorta constriction mice that was accompanied by a decrease in expression of the nicotinamide phosphoribosyltransferase enzyme that recycles the nicotinamide precursor, whereas the nicotinamide riboside kinase 2 (NMRK2) that phosphorylates the nicotinamide riboside precursor is increased, to a higher level in the DCM (40-fold) than in transverse aorta constriction (4-fold). This shift was also observed in human failing heart biopsies in comparison with nonfailing controls. We show that the Nmrk2 gene is an AMP-activated protein kinase and peroxisome proliferator-activated receptor a responsive gene that is activated by energy stress and NAD(+) depletion in isolated rat cardiomyocytes. Nicotinamide riboside efficiently rescues NAD(+) synthesis in response to FK866-mediated inhibition of nicotinamide phosphoribosyltransferase and stimulates glycolysis in cardiomyocytes. Accordingly, we show that nicotinamide riboside supplementation in food attenuates the development of heart failure in mice, more robustly in DCM, and partially after transverse aorta constriction, by stabilizing myocardial NAD(+) levels in the failing heart. Nicotinamide riboside treatment also robustly increases the myocardial levels of 3 metabolites, nicotinic acid adenine dinucleotide, methylnicotinamide, and N1-methyl-4-pyridone-5-carboxamide, that can be used as validation biomarkers for the treatment. CONCLUSIONS: The data show that nicotinamide riboside, the most energy-efficient among NAD precursors, could be useful for treatment of heart failure, notably in the context of DCM, a disease with few therapeutic options.
引用
收藏
页码:2256 / 2273
页数:18
相关论文
共 50 条
[1]   D-2-hydroxyglutarate produced by mutant IDH2 causes cardiomyopathy and neurodegeneration in mice [J].
Akbay, Esra A. ;
Moslehi, Javid ;
Christensen, Camilla L. ;
Saha, Supriya ;
Tchaicha, Jeremy H. ;
Ramkissoon, Shakti H. ;
Stewart, Kelly M. ;
Carretero, Julian ;
Kikuchi, Eiki ;
Zhang, Haikuo ;
Cohoon, Travis J. ;
Murray, Stuart ;
Liu, Wei ;
Uno, Kazumasa ;
Fisch, Sudeshna ;
Jones, Kristen ;
Gurumurthy, Sushma ;
Gliser, Camelia ;
Choe, Sung ;
Keenan, Marie ;
Son, Jaekyoung ;
Stanley, Illana ;
Losman, Julie A. ;
Padera, Robert ;
Bronson, Roderick T. ;
Asara, John M. ;
Abdel-Wahab, Omar ;
Amrein, Philip C. ;
Fathi, Amir T. ;
Danial, Nika N. ;
Kimmelman, Alec C. ;
Kung, Andrew L. ;
Ligon, Keith L. ;
Yen, Katharine E. ;
Kaelin, William G., Jr. ;
Bardeesy, Nabeel ;
Wong, Kwok-Kin .
GENES & DEVELOPMENT, 2014, 28 (05) :479-490
[2]   NAD+ metabolism in health and disease [J].
Belenky, Peter ;
Bogan, Katrina L. ;
Brenner, Charles .
TRENDS IN BIOCHEMICAL SCIENCES, 2007, 32 (01) :12-19
[3]   Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+ [J].
Belenky, Peter ;
Racette, Frances G. ;
Bogan, Katrina L. ;
McClure, Julie M. ;
Smith, Jeffrey S. ;
Brenner, Charles .
CELL, 2007, 129 (03) :473-484
[4]   Nicotinamide Riboside and Nicotinic Acid Riboside Salvage in Fungi and Mammals QUANTITATIVE BASIS FOR Urh1 AND PURINE NUCLEOSIDE PHOSPHORYLASE FUNCTION IN NAD+ METABOLISM [J].
Belenky, Peter ;
Christensen, Kathryn C. ;
Gazzaniga, Francesca ;
Pletnev, Alexandre A. ;
Brenner, Charles .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (01) :158-164
[5]   Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans [J].
Bieganowski, P ;
Brenner, C .
CELL, 2004, 117 (04) :495-502
[6]   Role of Sirtuins in Regulating Pathophysiology of the Heart [J].
Bindu, Samik ;
Pillai, Vinodkumar B. ;
Gupta, Mahesh P. .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2016, 27 (08) :563-573
[7]   Nicotinic acid nicotinamide and nicotinamide riboside:: A molecular evaluation of NAD+ precursor vitamins in human nutrition [J].
Bogan, Katrina L. ;
Brenner, Charles .
ANNUAL REVIEW OF NUTRITION, 2008, 28 :115-130
[8]   The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity [J].
Canto, Caries ;
Houtkooper, Riekelt H. ;
Pirinen, Eija ;
Youn, Dou Y. ;
Oosterveer, Maaike H. ;
Cen, Yana ;
Fernandez-Marcos, Pablo J. ;
Yamamoto, Hiroyasu ;
Andreux, Penelope A. ;
Cettour-Rose, Philippe ;
Gademann, Karl ;
Rinsch, Chris ;
Schoonjans, Kristina ;
Sauve, Anthony A. ;
Auwerx, Johan .
CELL METABOLISM, 2012, 15 (06) :838-847
[9]   NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus [J].
Canto, Carles ;
Menzies, Keir J. ;
Auwerx, Johan .
CELL METABOLISM, 2015, 22 (01) :31-53
[10]   NAD+-Dependent Activation of Sirt1 Corrects the Phenotype in a Mouse Model of Mitochondrial Disease [J].
Cerutti, Raffaele ;
Pirinen, Eija ;
Lamperti, Costanza ;
Marchet, Silvia ;
Sauve, Anthony A. ;
Li, Wei ;
Leoni, Valerio ;
Schon, Eric A. ;
Dantzer, Francoise ;
Auwerx, Johan ;
Viscomi, Carlo ;
Zeviani, Massimo .
CELL METABOLISM, 2014, 19 (06) :1042-1049