Auto-Tuned Weighted-Penalty Parameter ADMM for Distributed Optimal Power Flow

被引:24
作者
Mavromatis, Costas [1 ]
Foti, Magda [1 ]
Vavalis, Manolis [1 ]
机构
[1] Univ Thessaly, Elect Comp Engn, Volos 38221, Greece
关键词
Optimal power flow; alternating direction method of multipliers; distributed optimization; power systems;
D O I
10.1109/TPWRS.2020.3016691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Alternating Direction Method of Multipliers (ADMM) is widely utilized to solve the distributed Optimal Power Flow (OPF) problem, providing convergence under certain assumptions. ADMM relies on a penalty parameter. to accelerate its convergence. The selection of appropriate values of rho is crucial for the quality of the final solution and for the efficiency of the iterative process. In this paper, we propose a weighted-rho ADMM, with its weights automatically determined by leveraging the nature of the optimal power flow problem. Specifically, the affinity matrix, a combination of the admittance matrix and Hessian matrix of the Lagrangian function of the associated OPF problem, is utilized to determine the penalty parameters. The convergence of the iterative scheme is analyzed and the effectiveness of the proposed methodology is validated through simulation experiments which show that the weighted-rho ADMM overcomes the necessity for suitable initial parameter selection.
引用
收藏
页码:970 / 978
页数:9
相关论文
共 25 条
[1]   Improvement of OPF decomposition methods applied to multi-area power systems [J].
Arnold, Michele ;
Knoepfli, Selina ;
Andersson, Goeran .
2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, 2007, :1308-+
[2]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[3]  
Conejo A. J., 2006, Decomposition techniques in mathematical programming: engineering and science applications
[4]  
Diamond S, 2016, J MACH LEARN RES, V17
[5]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[6]   PARALLEL ALTERNATING DIRECTION MULTIPLIER DECOMPOSITION OF CONVEX-PROGRAMS [J].
ECKSTEIN, J .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 80 (01) :39-62
[7]   A distributed approach to the OPF problem [J].
Erseghe, Tomaso .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2015, :1-13
[8]   Distributed Optimal Power Flow Using ADMM [J].
Erseghe, Tomaso .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (05) :2370-2380
[9]   A Distributed and Scalable Processing Method Based Upon ADMM [J].
Erseghe, Tomaso .
IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (09) :563-566
[10]   A Case for Nonconvex Distributed Optimization in Large-Scale Power Systems [J].
Guo, Junyao ;
Hug, Gabriela ;
Tonguz, Ozan K. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (05) :3842-3851