Applying high-throughput phenotyping to plant-insect interactions: picturing more resistant crops

被引:62
作者
Goggin, Fiona L. [1 ]
Lorence, Argelia [2 ]
Topp, Christopher N. [3 ]
机构
[1] Univ Arkansas, Dept Entomol, 319 Agr Bldg, Fayetteville, AR 72701 USA
[2] Arkansas State Univ, Arkansas Biosci Inst, State Univ, AR 72467 USA
[3] Danforth Ctr, St Louis, MO 63132 USA
基金
美国国家科学基金会;
关键词
ARABIDOPSIS-THALIANA; IMAGE-ANALYSIS; CHLOROPHYLL FLUORESCENCE; LEAF-AREA; GROWTH; ROOT; GROWSCREEN; PHENOMICS; PLATFORM; SYSTEM;
D O I
10.1016/j.cois.2015.03.002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Through automated image collection and analysis, high-throughput phenotyping (HTP) systems non-destructively quantify a diversity of traits in large plant populations. Some platforms collect data in greenhouses or growth chambers while others are field-based. Platforms also vary in the number and type of sensors, including visible, fluorescence, infrared, hyperspectral, and three-dimensional cameras that can detect traits within and beyond the visible spectrum. These systems could be applied to quantify the impact of herbivores on plant health, to monitor herbivores in choice or no-choice bioassays, or to estimate plant properties such as defensive allelochemicals. By increasing the throughput, precision, and dimensionality of these measures, HTP has the potential to revolutionize the field of plant-insect interactions, including breeding programs for resistance and tolerance.
引用
收藏
页码:69 / 76
页数:8
相关论文
共 64 条
[1]   Function of jasmonate in response and tolerance of Arabidopsis to thrip feeding [J].
Abe, Hiroshi ;
Ohnishi, Jun ;
Narusaka, Mari ;
Seo, Shigemi ;
Narusaka, Yoshihiro ;
Tsuda, Shinya ;
Kobayashi, Masatomo .
PLANT AND CELL PHYSIOLOGY, 2008, 49 (01) :68-80
[2]   Development and evaluation of a field-based high-throughput phenotyping platform [J].
Andrade-Sanchez, Pedro ;
Gore, Michael A. ;
Heun, John T. ;
Thorp, Kelly R. ;
Carmo-Silva, A. Elizabete ;
French, Andrew N. ;
Salvucci, Michael E. ;
White, Jeffrey W. .
FUNCTIONAL PLANT BIOLOGY, 2014, 41 (01) :68-79
[3]   A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects [J].
Arvidsson, Samuel ;
Perez-Rodriguez, Paulino ;
Mueller-Roeber, Bernd .
NEW PHYTOLOGIST, 2011, 191 (03) :895-907
[4]   Expression of α-DIOXYGENASE 1 in Tomato and Arabidopsis Contributes to Plant Defenses Against Aphids [J].
Avila, Carlos Augusto ;
Arevalo-Soliz, Lirio Milenka ;
Lorence, Argelia ;
Goggin, Fiona L. .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2013, 26 (08) :977-986
[5]   Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors [J].
Backoulou, Georges F. ;
Elliott, Norman C. ;
Giles, Kristopher ;
Phoofolo, Mpho ;
Catana, Vasile ;
Mirik, Mustafa ;
Michels, Jerry .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2011, 78 (02) :123-129
[6]   Chlorophyll fluorescence: A probe of photosynthesis in vivo [J].
Baker, Neil R. .
ANNUAL REVIEW OF PLANT BIOLOGY, 2008, 59 :89-113
[7]  
Berger Bettina, 2012, Methods Mol Biol, V918, P9, DOI 10.1007/978-1-61779-995-2_2
[8]   PHENOMICS: THE SYSTEMATIC STUDY OF PHENOTYPES ON A GENOME-WIDE SCALE [J].
Bilder, R. M. ;
Sabb, F. W. ;
Cannon, T. D. ;
London, E. D. ;
Jentsch, J. D. ;
Parker, D. Stott ;
Poldrack, R. A. ;
Evans, C. ;
Freimer, N. B. .
NEUROSCIENCE, 2009, 164 (01) :30-42
[9]  
Branson K, 2009, NAT METHODS, V6, P451, DOI [10.1038/NMETH.1328, 10.1038/nmeth.1328]
[10]   Plasticity of Arabidopsis Root Gravitropism throughout a Multidimensional Condition Space Quantified by Automated Image Analysis [J].
Brooks, Tessa L. Durham ;
Miller, Nathan D. ;
Spalding, Edgar P. .
PLANT PHYSIOLOGY, 2010, 152 (01) :206-216