Optimal Boundary Control of Non-Isothermal Viscous Fluid Flow

被引:28
作者
Baranovskii, Evgenii S. [1 ]
Domnich, Anastasia A. [1 ]
Artemov, Mikhail A. [1 ]
机构
[1] Voronezh State Univ, Dept Appl Math Informat & Mech, Voronezh 394018, Russia
关键词
non-isothermal flows; creeping flows; viscous fluid; optimal control; boundary control; pressure boundary conditions; weak solution; existence theorem; marginal function; EXACT CONTROLLABILITY; BOUSSINESQ; HEAT; SOLVABILITY;
D O I
10.3390/fluids4030133
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study an optimal control problem for the mathematical model that describes steady non-isothermal creeping flows of an incompressible fluid through a locally Lipschitz bounded domain. The control parameters are the pressure and the temperature on the in-flow and out-flow parts of the boundary of the flow domain. We propose the weak formulation of the problem and prove the existence of weak solutions that minimize a given cost functional. It is also shown that the marginal function of this control system is lower semi-continuous.
引用
收藏
页数:14
相关论文
共 20 条
[1]  
Alekseev GV, 2010, ADV MATH FLUID MECH, P1
[2]   Stability of Optimal Controls for the Stationary Boussinesq Equations [J].
Alekseev, Gennady ;
Tereshko, Dmitry .
INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 2011
[4]   Solvability of inverse extremal problems for stationary heat and mass transfer equations [J].
Alekseev, GV .
SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (05) :811-827
[5]  
[Anonymous], 2007, CONTROL COUPLED PART
[6]  
Conca C., 1994, Japan. J. Math. (N.S.), V20, P279, DOI DOI 10.4099/MATH1924.20.279
[7]  
Fursikov A.V., 2000, Optimal Control of Distributed Systems: Theory and Applications
[8]   Exact controllability of the Navier-Stokes and Boussinesq equations [J].
Fursikov, AV ;
Imanuvilov, OY .
RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (03) :565-618
[9]   Local exact controllability to the trajectories of the Boussinesq system [J].
Guerrero, S .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (01) :29-61
[10]   Optimal boundary control of a system describing thermal convection [J].
Korotkii, A. I. ;
Kovtunov, D. A. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 272 :74-100