Estimating large losses in insurance analytics and operational risk using the g-and-h distribution

被引:9
作者
Bee, M. [1 ]
Hambuckers, J. [2 ]
Trapin, L. [3 ]
机构
[1] Univ Trento, Dept Econ & Management, Trento, Italy
[2] Univ Liege, Dept Finance, HEC Liege, Liege, Belgium
[3] Univ Bologna, Dept Stat Sci P Fortunati, Bologna, Italy
关键词
Actuarial science; Tail analysis; Advanced econometrics; Computational finance; Extreme risk and insurance;
D O I
10.1080/14697688.2020.1849778
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we study the estimation of parameters for g-and-h distributions. These distributions find applications in modeling highly skewed and fat-tailed data, like extreme losses in the banking and insurance sector. We first introduce two estimation methods: a numerical maximum likelihood technique, and an indirect inference approach with a bootstrap weighting scheme. In a realistic simulation study, we show that indirect inference is computationally more efficient and provides better estimates than the maximum likelihood method in the case of extreme features in the data. Empirical illustrations on insurance and operational losses illustrate these findings.
引用
收藏
页码:1207 / 1221
页数:15
相关论文
共 29 条
[1]  
[Anonymous], 1977, P NSF SPONS REG RES
[2]  
[Anonymous], 2006, Exploring data tables, trends, and shapes, DOI DOI 10.1002/9781118150702.CH11
[3]  
[Anonymous], 2008, Applied Mathematical Sciences
[4]   Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach [J].
Bee, M. ;
Hambuckers, J. ;
Trapin, L. .
QUANTITATIVE FINANCE, 2019, 19 (08) :1255-1266
[5]   A simple approach to the estimation of Tukey's gh distribution [J].
Bee, M. ;
Trapin, L. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (16) :3287-3302
[6]   Tail Index Estimation and an Exponential Regression Model [J].
J. Beirlant ;
G. Dierckx ;
Y. Goegebeur ;
G. Matthys .
Extremes, 1999, 2 (2) :177-200
[7]  
CALZOLARI G, 2004, REV EC STUD, V71
[8]  
Cruz M. G., 2015, Fundamental aspects of operational risk and insurance analytics: A handbook of operational risk
[9]   The quantitative modeling of operational risk: between g-and-h and EVT [J].
Degen, Matthias ;
Embrechts, Paul ;
Lambrigger, Dominik D. .
ASTIN BULLETIN-THE JOURNAL OF THE INTERNATIONAL ACTUARIAL ASSOCIATION, 2007, 37 (02) :265-291
[10]  
DING B, 2007, EURO FINANC MANAGE, V13