A Deep Learning/Neuroevolution Hybrid for Visual Control

被引:0
作者
Poulsen, Andreas Precht [1 ]
Thorhauge, Mark [1 ]
Funch, Mikkel Hvilshj [1 ]
Risi, Sebastian [1 ]
机构
[1] IT Univ Copenhagen, Ctr Comp Games Res, Copenhagen, Denmark
来源
PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION) | 2017年
关键词
Neuroevolution; Deep Learning; Visual Control; NEAT;
D O I
10.1145/3067695.3076016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a deep learning / neuroevolution hybrid approach called DLNE, which allows FPS bots to learn to aim & shoot based only on high-dimensional raw pixel input. The deep learning component is responsible for visual recognition and translating raw pixels to compact feature representations, while the evolving network takes those features as inputs to infer actions. The results suggest that combining deep learning and neuroevolution in a hybrid approach is a promising research direction that could make complex visual domains directly accessible to networks trained through evolution.
引用
收藏
页码:93 / 94
页数:2
相关论文
共 5 条
  • [1] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [2] Evolving Deep Unsupervised Convolutional Networks for Vision-Based Reinforcement Learning
    Koutnik, Jan
    Schmidhuber, Juergen
    Gomez, Faustino
    [J]. GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 541 - 548
  • [3] Human-level control through deep reinforcement learning
    Mnih, Volodymyr
    Kavukcuoglu, Koray
    Silver, David
    Rusu, Andrei A.
    Veness, Joel
    Bellemare, Marc G.
    Graves, Alex
    Riedmiller, Martin
    Fidjeland, Andreas K.
    Ostrovski, Georg
    Petersen, Stig
    Beattie, Charles
    Sadik, Amir
    Antonoglou, Ioannis
    King, Helen
    Kumaran, Dharshan
    Wierstra, Daan
    Legg, Shane
    Hassabis, Demis
    [J]. NATURE, 2015, 518 (7540) : 529 - 533
  • [4] Neuro-visual Control in the Quake II Game Engine
    Parker, Matt
    Bryant, Bobby D.
    [J]. 2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 3828 - 3833
  • [5] Neuroevolution in Games: State of the Art and Open Challenges
    Risi, Sebastian
    Togelius, Julian
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2017, 9 (01) : 25 - 41