Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes

被引:298
作者
Panday, Ashoutosh [1 ,2 ]
Mullin, Scott [1 ,2 ]
Gomez, Enrique D. [2 ,3 ]
Wanakule, Nisita [2 ]
Chen, Vincent L. [2 ]
Hexemer, Alexander [4 ]
Pople, John [5 ]
Balsara, Nitash P. [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, ALS, Berkeley, CA 94720 USA
[5] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA
关键词
RECHARGEABLE LITHIUM BATTERIES; POLYMER ELECTROLYTES; SOLID-STATE; IONIC-CONDUCTIVITY; LITHIUM/POLYMER CELLS; DENDRITIC GROWTH; TRIBLOCK COPOLYMERS; GRAFT COPOLYMER; PHASE-BEHAVIOR; OXIDE);
D O I
10.1021/ma900451e
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The ionic conductivity, sigma, of mixtures of nearly symmetric polystyrene-block-poly(ethylene oxide) copolymers and Li[N(SO2CF3)(2)] (LiTFSI) salt was measured as it function of molecular weight, salt concentration, and temperature. The molecular weight of the poly(ethylene oxide) block, M-PEO, was varied from 7 to 98 kg/mol. The molar ratio of lithium to ethylene oxide, r, was varied from 0.02 to 0.10. In general, sigma increases with increasing M-PEO for all values of r. The data can be summarized by plots of normalized conductivity, sigma(n), versus M-PEO. where sigma(n) = sigma/(f phi(PEO)sigma(PEO)), phi(PEO) is the PEO volume Fraction in the copolymer, sigma(PEO) is the conductivity of PEO homopolymer, and f is a morphology-dependent factor set equal to 2/3 for our lamellar samples. The temperature-dependent conductivity data at a given salt concentration collapse onto a single curve when plotted in this formal. At r = 0.085 sigma(n) values reach a plateau in the vicinity of it unity in the high M-PEO limit. At other values of r, sigma(n) continues to increase with M-PEO within the experimental range and reaches a value of around 0.5 in the high M-PEO limit.
引用
收藏
页码:4632 / 4637
页数:6
相关论文
共 57 条
[1]   AN ALL SOLID-STATE POLYMER-POLYMER ELECTROLYTE-LITHIUM RECHARGEABLE BATTERY FOR ROOM-TEMPERATURE APPLICATIONS [J].
ARBIZZANI, C ;
MASTRAGOSTINO, M ;
HAMAIDE, T ;
GUYOT, A .
ELECTROCHIMICA ACTA, 1990, 35 (11-12) :1781-1785
[2]   POLYMERS WITH IONIC-CONDUCTIVITY [J].
ARMAND, M .
ADVANCED MATERIALS, 1990, 2 (6-7) :278-286
[3]  
Armand M. B., 1979, FAST ION TRANSPORT S
[4]   POLYMER ELECTROLYTES [J].
ARMAND, MB .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1986, 16 :245-261
[5]   MICROSCOPIC INVESTIGATION OF IONIC-CONDUCTIVITY IN ALKALI-METAL SALTS POLY(ETHYLENE OXIDE) ADDUCTS [J].
BERTHIER, C ;
GORECKI, W ;
MINIER, M ;
ARMAND, MB ;
CHABAGNO, JM ;
RIGAUD, P .
SOLID STATE IONICS, 1983, 11 (01) :91-95
[6]   IONIC-CONDUCTIVITY AND DIFFUSIVITY IN POLYETHYLENE OXIDE ELECTROLYTE-SOLUTIONS AS MODELS FOR POLYMER ELECTROLYTES [J].
BODEN, N ;
LENG, SA ;
WARD, IM .
SOLID STATE IONICS, 1991, 45 (3-4) :261-270
[7]   An EIS study of the anode Li/PEO-LiTFSI of a Li polymer battery [J].
Bouchet, R ;
Lascaud, S ;
Rosso, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1385-A1389
[8]   Dendritic growth mechanisms in lithium/polymer cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 1999, 81 :925-929
[9]   IONIC TRANSPORT IN POLYMER ELECTROLYTES [J].
BRUCE, PG ;
GRAY, FM ;
SHI, J ;
VINCENT, CA .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1991, 64 (05) :1091-1099
[10]   Performance limitations of polymer electrolytes based on ethylene oxide polymers [J].
Buriez, O ;
Han, YB ;
Hou, J ;
Kerr, JB ;
Qiao, J ;
Sloop, SE ;
Tian, MM ;
Wang, SG .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :149-155