Thermal stability of modified chromium dioxide nanopowders with various magnetic properties obtained by hydrothermal route

被引:6
作者
Arkhipov, D. I. [1 ]
Bobrysheva, N. P. [2 ]
Dzidziguri, E. L. [1 ]
Osmolowsky, M. G. [2 ]
Osmolovskaya, O. M. [2 ]
机构
[1] Natl Univ Sci & Technol MISiS, Leninskiy Pr 4, Moscow 119049, Russia
[2] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
关键词
Chromium dioxide; Nanoparticles; Nanopowders; Coercivity; Thermogravimetry;
D O I
10.1007/s10973-016-5919-3
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal decomposition of hydrothermal micro- and nano-sized CrO2 powders obtained at the presence of nuclei with different structures (Mo + Sb, Te + Sn) and an iron dopant (Te + Sn + Fe) was studied by thermal analysis (DTG-DSC), XRD, SEM, VSM methods, and SSA estimation. It has been found that the decomposition of chromium dioxide happens with formation of CrO1.5 at 450-540 A degrees C, no changes in the lattice parameters were observed. The temperature of the process for nano-sized CrO2 samples is 100 A degrees C lower than for micro-sized sample. The decomposition of nanopowders occurs in two stages with DTG and DSC peaks at about 470 and 500 A degrees C correspondingly. The particles under study consist of a CrO2 core and a CrOOH shell, so the sample transformation begins from the shell oxidation resulting in the CrO2 surface layer formation. The first peak corresponds to the decomposition of such layer to Cr2O3, and the second-to the core transformation which occurs later. For the iron-containing powders, the additional endoeffect and mass loss has been found at 550 A degrees C, which is determined by presence of a FexCr1-xO2 solid solution mainly located in the particle shell. The shift toward lower temperatures for nano-sized samples decomposition peak and the observed peak splitting indicate an impact of the dimensional effect on powder thermal stability. Obtained data show that nanopowders are highly stable up to 200 A degrees C and can be used for magnetoelectronic devices.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 33 条
[1]  
[Anonymous], 1993, Patent, Patent No. [EP 0548642A, 0548642]
[2]   Investigation into chromium dioxide nanopowders obtained under hydrothermal conditions in the presence of molybdenum and antimony modifiers [J].
Arkhipov D.I. ;
Osmolovskaya O.M. ;
Dzidziguri E.L. ;
Osmolovskii M.G. .
Nanotechnologies in Russia, 2015, 10 (1-2) :60-66
[3]   Differential equation for the melting temperature of small-size particles [J].
Barybin, A. A. ;
Shapovalov, V. I. .
TECHNICAL PHYSICS LETTERS, 2010, 36 (11) :1058-1060
[4]   Transport and magnetotransport properties of cold-pressed CrO2 powder, prepared by hydrothermal synthesis [J].
Belevtsev, B. I. ;
Dalakova, N. V. ;
Osmolowsky, M. G. ;
Beliayev, E. Yu. ;
Selutin, A. A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 479 (1-2) :11-16
[5]   Tunnel magnetoresistance of compacted CrO2 powders with particle shape anisotropy [J].
Dalakova N.V. ;
Beliayev E.Y. ;
Osmolovskaya O.M. ;
Osmolovsky M.G. ;
Gorelyy V.A. .
Bulletin of the Russian Academy of Sciences: Physics, 2015, 79 (06) :789-793
[6]  
Dwivedi S., 2014, Phys. Procedia, V54, P62, DOI [10.1016/j.phpro.2014.10.037, DOI 10.1016/J.PHPRO.2014.10.037]
[7]   Magnetic pigments for recording media [J].
Ensling, J ;
Gutlich, P ;
Klinger, R ;
Meisel, W ;
Jachow, H ;
Schwab, E .
HYPERFINE INTERACTIONS, 1998, 111 (1-4) :143-150
[8]   STRUCTURAL-ANALYSIS OF THE STABILIZATION LAYER OF CHROMIUM DIOXIDE PARTICLES [J].
ESSIG, M ;
MULLER, MW ;
SCHWAB, E .
IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (01) :69-71
[9]   Influence of ultrasonic treatment on magnetotransport of CrO2 granular compacts [J].
Fan, LN ;
Chen, YJ ;
Zhang, XY ;
Yao, DL .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 285 (03) :353-358
[10]   Initial studies on the oxide system Cr2O3-Sb2O4 [J].
Filipek, E ;
Kurzawa, M ;
Dabrowska, G .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2000, 60 (01) :167-171