On some boundary crossing problems for Gaussian random walks

被引:0
作者
Lotov, VI
机构
关键词
random walks; Wiener-Hopf factorization; first exit time; overshoot; sequential probability ratio test;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider random walks with Gaussian distribution of summands. New representations for Wiener-Kopf factorization components are obtained. The factorization method is used to study the distribution of the excess over one-sided and two-sided boundaries. asymptotic expansions for these distributions and for the expectation of the first exit time are obtained under the assumption that the boundaries tend to infinity.
引用
收藏
页码:2154 / 2171
页数:18
相关论文
共 12 条
[1]  
Borovkov A. A., 1962, SIB MAT ZH, V3, P645
[2]  
Borovkov A. A., 1976, WAHRSCHEINLICHKEITST
[3]  
Borovkov AA, 1976, STOCHASTIC PROCESSES
[4]  
Hille E., 1962, ANAL FUNCTION THEORY, V2
[5]   A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM-WALK WITH A 2-SIDED BOUNDARY [J].
KEMPERMAN, JHB .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (04) :1168-&
[6]  
LOTOV VI, 1979, THEOR PROBAB APPL+, V24, P869
[7]  
LOTOV VI, 1979, THEOR PROBAB APPL+, V24, P480
[8]  
LOTOV VI, 1987, THEORY PROBAB APPL, V32, P57
[9]  
LOTOV VI, 1989, CONTROL RANDOM PROCE
[10]  
PRESMAN EL, 1971, MATH USSR IZV, V3, P815