Parity of Schur's partition function

被引:3
作者
Chen, Shi-Chao [1 ]
机构
[1] Henan Univ, Sch Math & Stat, Inst Contemporary Math, Kaifeng 475004, Peoples R China
关键词
REPRESENTATIONS FUNCTION; NUMBER; VALUES;
D O I
10.1016/j.crma.2019.05.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A(n) be the number of Schur's partitions of n, i.e. the number of partitions of n into distinct parts congruent to 1, 2 (mod 3). We prove x/(logx)(47/48) << #{0 <= n <= x : A (2n + 1) is odd} << x/(logx)(1/2). (C) 2019 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:418 / 423
页数:6
相关论文
共 26 条
[1]   GENERALIZATIONS OF SCHUR PARTITION THEOREM [J].
ALLADI, K ;
GORDON, B .
MANUSCRIPTA MATHEMATICA, 1993, 79 (02) :113-126
[2]  
Andrews G. E., 2019, Developments in Mathematics, V58, P71
[3]  
Andrews G.E., 2000, Q SERIES CONT PERSPE, V254, P45
[4]   ON SCHURS 2ND PARTITION THEOREM [J].
ANDREWS, GE .
GLASGOW MATHEMATICAL JOURNAL, 1967, 8 :127-&
[5]  
[Anonymous], 1976, THEORY PARTITIONS EN
[6]  
[Anonymous], 1994, Contemp. Math., V166, P141
[7]  
Bellaïche J, 2018, RES MATH SCI, V5, DOI 10.1007/s40687-018-0123-7
[8]   Parity of the coefficients of modular forms [J].
Bellaiche, Joel ;
Nicolas, Jean-Louis .
RAMANUJAN JOURNAL, 2016, 40 (01) :1-44
[9]  
Bernays P., 1912, THESIS
[10]   A COMBINATORIAL PROOF OF SCHUR 1926 PARTITION THEOREM [J].
BRESSOUD, DM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 79 (02) :338-340