Initiation of cracks with cohesive force models: a variational approach

被引:54
作者
Charlotte, Miguel
Laverne, Jerome
Marigo, Jean-Jacques
机构
[1] Univ Paris 13, LPMTM, UPR 9007, F-93430 Villetaneuse, France
[2] Dept AMA, EDF R&D, F-92141 Clamart, France
[3] CNRS, UMR 2832, EDF, LaMSID, F-92141 Clamart, France
[4] Univ Paris 06, UMR 7607, Modelisat Mecan Lab, F-75252 Paris 05, France
关键词
fracture; Calculus of Variations; stability; cohesive forces; yield stress;
D O I
10.1016/j.euromechsol.2006.05.002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In the spirit of the variational approach of Fracture Mechanics initiated in [Del Piero, G., 1997. One-dimensional ductile-brittle transition, yielding and structured deformations. In: P. Argoul, M. Fremond (Eds.), Proceedings of IUTAM Symposium "Variations de domaines et frontieres libres en mecanique", Paris, 1997, Kluwer Academic] and [Francfort, G.A., Marigo, J.-J., 1998. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (8), 1319-1342], we define the loss of stability of the elastic response of the body as the criterion of initiation of cracks. The result is very sensitive to the choice of the surface energy density. On one hand, if we adopt the Griffith assumption, then the elastic state is generally always stable. On the other hand, in the case of a surface energy of the Barenblatt type, i.e. a surface energy depending non-trivially on the jump of the displacement and inducing cohesive forces, the elastic response remains stable only if the stress field does not reach a critical value. In the full three-dimensional context of an isotropic material, we prove that this yield stress criterion is equivalent to a maximal traction criterion and a maximal shear criterion if the surface energy density is Frechet differentiable at the origin. When the surface energy density is only Gateaux differentiable, we obtain a yield stress criterion based on an intrinsic curve in the Mohr diagram. In any case, the domain of the admissible stress tensors is convex, unbounded in the direction of the hydrostatic pressures and depends only on the extreme eigenvalues of the stress tensor. (C) 2006 Elsevier SAS. All rights reserved.
引用
收藏
页码:649 / 669
页数:21
相关论文
共 20 条
[1]  
[Anonymous], 1983, COURS CALCUL STRUCTU
[2]  
Barenblatt GI., 1962, ADV APPL MECH, V7, P55, DOI [10.1016/S0065-2156(08)70121-2, DOI 10.1016/S0065-2156(08)70121-2]
[3]   Variational formulation of softening phenomena in fracture mechanics. The one-dimensional case [J].
Braides, A ;
Dal Maso, G ;
Garroni, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 146 (01) :23-58
[4]  
Bui H.D., 1978, MECANIQUE RUPTURE FR
[5]  
CHAMBOLLE A, 2005, 583 CMAP EC POL
[6]  
CHARLOTTE M, 2000, DATA SCI LIB, P7
[7]  
Cherepanov GP., 1979, MECH BRITTLE FRACTUR
[8]  
DACOROGNA B, 1992, CAHIERS MATH ECOLE P
[9]  
Dacorogna B., 1989, DIRECT METHODS CALCU
[10]   Macro- and micro-cracking in one-dimensional elasticity [J].
Del Piero, G ;
Truskinovsky, L .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (6-7) :1135-1148