Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity

被引:67
作者
Lin, Guang [1 ,2 ,3 ]
Liu, Jiangguo [4 ]
Mu, Lin [5 ]
Ye, Xiu [6 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[3] Pacific NW Natl Lab, Richland, WA 99352 USA
[4] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[5] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[6] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
基金
美国国家科学基金会;
关键词
Anisotropy; Darcy flow; Heterogeneity; Porous media; Weak Galerkin; DISCONTINUOUS GALERKIN; ELLIPTIC PROBLEMS;
D O I
10.1016/j.jcp.2014.07.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a family of weak Galerkin finite element methods (WGFEMs) for Darcy flow computation. The WGFEMs are new numerical methods that rely on the novel concept of discrete weak gradients. The WGFEMs solve for pressure unknowns both in element interiors and on the mesh skeleton. The numerical velocity is then obtained from the discrete weak gradient of the numerical pressure. The new methods are quite different than many existing numerical methods in that they are locally conservative by design, the resulting discrete linear systems are symmetric and positive-definite, and there is no need for tuning problem-dependent penalty factors. We test the WGFEMs on benchmark problems to demonstrate the strong potential of these new methods in handling strong anisotropy and heterogeneity in Darcy flow. Published by Elsevier Inc.
引用
收藏
页码:422 / 437
页数:16
相关论文
共 33 条
[1]  
[Anonymous], 1965, STRESS ANAL
[2]  
[Anonymous], 2006, COMPUTATIONAL SCI EN
[3]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[4]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[5]  
Bahriawati C., 2005, COMPUT METHODS APPL, V5, P333, DOI DOI 10.2478/CMAM-2005-0016)
[6]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
[7]  
Brenner SC, 2008, ELECTRON T NUMER ANA, V30, P107
[8]   Mixed discontinuous Galerkin methods for Darcy flow [J].
Brezzi, F ;
Hughes, TJR ;
Marini, LD ;
Masud, A .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) :119-145
[9]   MIMETIC FINITE DIFFERENCES FOR ELLIPTIC PROBLEMS [J].
Brezzi, Franco ;
Buffa, Annalisa ;
Lipnikov, Konstantin .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02) :277-295
[10]  
Chen L., IFEM INNOVATIVE FINI