The Local Superconvergence of the Linear Finite Element Method for the Poisson Problem

被引:2
作者
He, Wen-ming [1 ]
Cui, Jun-Zhi [2 ]
Zhu, Qi-ding [3 ]
Wen, Zhong-liang [1 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 325035, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[3] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
displacement; Green's function; local superconvergence; Richardson extrapolation; tensor-product block; ASYMPTOTIC ERROR EXPANSION; EXTRAPOLATION; GRIDS;
D O I
10.1002/num.21842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assume that n 2 . In this study, the Richardson extrapolation for the tensor-product block element and the linear finite element theory of the Green's function will be combined to study the local superconvergence of finite element methods for the Poisson equation in a bounded polytopic domain < subset of> R n (polygonal or polyhedral domain for n =2,3 ), where a family of tensor-product block partitions is not required or the solution need not have high global smoothness. We present a special family of partitions T h satisfying, for any e T h , e is a tensor-product block whenever ( e , ) h where ( e , ) denotes the distance between e and . By the linear finite element theory of the Green's function and the Richardson extrapolation for the tensor-product block element, we obtain the local superconvergence of the displacement for the linear finite element method over the special family of partitions T h . (c) 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 930-946, 2014
引用
收藏
页码:930 / 946
页数:17
相关论文
共 24 条
[1]   ASYMPTOTIC ERROR EXPANSION AND RICHARDSON EXTRAPOLATION FOR LINEAR FINITE-ELEMENTS [J].
BLUM, H ;
LIN, Q ;
RANNACHER, R .
NUMERISCHE MATHEMATIK, 1986, 49 (01) :11-37
[2]  
BRAMBLE JH, 1977, MATH COMPUT, V31, P94, DOI 10.1090/S0025-5718-1977-0431744-9
[3]  
Brandts J, 2005, J COMPUT MATH, V23, P27
[4]  
Brandts J, 2006, INT J NUMER ANAL MOD, V3, P303
[5]   Weighted Sobolev Spaces and Degenerate Elliptic Equations [J].
Cavalheiro, Albo Carlos .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2) :117-132
[6]  
Chen C., 2006, STRUCTURE THEORY SUP
[7]   NODAL O(h4)-SUPERCONVERGENCE IN 3D BY AVERAGING PIECEWISE LINEAR, BILINEAR, AND TRILINEAR FE APPROXIMATIONS [J].
Hannukainen, Antti ;
Korotov, Sergey ;
Krizek, Michal .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2010, 28 (01) :1-10
[8]   A new superconvergence and extrapolation for second order triangular element [J].
He, WM .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 174 (01) :300-315
[9]   Superconvergence of Interpolated Collocation Solutions for Hammerstein Equations [J].
Huang, Qiumei ;
Zhang, Shuhua .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (02) :290-304
[10]  
Krasovskii J.P., 1967, Mathematics of the USSR, V1, P935