Electrically pressure sensitive poly(vinylidene fluoride)/polypyrrole electrospun mats

被引:111
作者
Merlini, C. [1 ,2 ]
Barra, G. M. O. [1 ]
Araujo, T. Medeiros [2 ]
Pegoretti, A. [2 ]
机构
[1] Univ Fed Santa Catarina, Dept Mech Engn, Florianopolis, SC, Brazil
[2] Univ Trento, Dept Ind Engn, I-38123 Trento, TN, Italy
关键词
THERMAL-ANALYSIS; CARBON-BLACK; NANOFIBERS; PVDF; POLYMER; POLYPYRROLE; FABRICATION; POLYANILINE; FIBERS; CONDUCTIVITY;
D O I
10.1039/c4ra01058b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Non-woven mats with highly pressure-sensitive electrical conductivity have been prepared by electrospinning of poly(vinylidene fluoride) (PVDF) containing up to 23 wt% of polypyrrole (PPy) particles synthesized by using dodecylbenzenesulfonic acid (DBSA) as a dopant. The obtained mats have been characterized by dynamic mechanical thermal analysis, differential scanning calorimetry, thermogravimetric analysis, infrared spectroscopy, scanning electron microscopy and nitrogen adsorption BET. Electrical resistivity changes of PVDF/ PPy blends were investigated during loadingunloading compressive cycles. It has been observed that the electrical resistivity varies reversibly with the applied compressive stress. The maximum sensitivity was obtained for a PVDF/ PPy blend containing 13 wt% of PPy, manifesting an electrical resistivity drop of 10 orders of magnitude, i. e. from 1017 to 107 U cm upon application of a compressive stress of 5 MPa. This peculiar response can be attributed to the formation of stress- induced conducting pathways in the electrospun network. Considering the remarkable resistivity change and the reproducibility of the phenomenon after repeated loadingunloading cycles, this mat may find application as a pressure sensor.
引用
收藏
页码:15749 / 15758
页数:10
相关论文
共 53 条
[1]   Electrospinning of a blend of a liquid crystalline polymer with poly(ethylene oxide): Vectran nanofiber mats and their mechanical properties [J].
Araujo, T. Medeiros ;
Sinha-Ray, S. ;
Pegoretti, A. ;
Yarin, A. L. .
JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (02) :351-358
[2]   Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications [J].
Aznar-Cervantes, Salvador ;
Roca, Maria I. ;
Martinez, Jose G. ;
Meseguer-Olmo, Luis ;
Cenis, Jose L. ;
Moraleda, Jose M. ;
Otero, Toribio F. .
BIOELECTROCHEMISTRY, 2012, 85 :36-43
[3]   Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction [J].
Bagheri, Habib ;
Aghakhani, Ali .
ANALYTICA CHIMICA ACTA, 2012, 713 :63-69
[4]   Thermoplastic elastomer/polyaniline blends: Evaluation of mechanical and electromechanical properties [J].
Barra, G. M. O. ;
Matins, R. R. ;
Kafer, K. A. ;
Paniago, R. ;
Vasques, C. T. ;
Pires, A. T. N. .
POLYMER TESTING, 2008, 27 (07) :886-892
[5]   Piezoresistance behavior of silicone-graphite composites in the proximity of the electric percolation threshold [J].
Beruto, DT ;
Capurro, M ;
Marro, G .
SENSORS AND ACTUATORS A-PHYSICAL, 2005, 117 (02) :301-308
[6]   Polyaniline and polypyrrole:: A comparative study of the preparation [J].
Blinova, Natalia V. ;
Stejskal, Jaroslav ;
Trchova, Miroslava ;
Prokes, Jan ;
Omastova, Maria .
EUROPEAN POLYMER JOURNAL, 2007, 43 (06) :2331-2341
[7]   Inherently conducting polymer modified polyurethane smart foam for pressure sensing [J].
Brady, S ;
Diamond, D ;
Lau, KT .
SENSORS AND ACTUATORS A-PHYSICAL, 2005, 119 (02) :398-404
[8]   Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency [J].
Chang, Chieh ;
Tran, Van H. ;
Wang, Junbo ;
Fuh, Yiin-Kuen ;
Lin, Liwei .
NANO LETTERS, 2010, 10 (02) :726-731
[9]   Piezoelectric nanofibers for energy scavenging applications [J].
Chang, Jiyoung ;
Domnner, Michael ;
Chang, Chieh ;
Lin, Liwei .
NANO ENERGY, 2012, 1 (03) :356-371
[10]   Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties [J].
Chronakis, IS ;
Grapenson, S ;
Jakob, A .
POLYMER, 2006, 47 (05) :1597-1603