Macroscopic model-based swarm guidance for a class of contaminant tracking applications

被引:0
作者
Ghanavati, Meysam [1 ]
Chakravarthy, Animesh [2 ]
Menon, Prathyush P. [3 ]
机构
[1] ArcelorMittal, Chicago, IL USA
[2] Univ Texas Arlington, Dept Mech & Aerosp Engn, Arlington, TX 76019 USA
[3] Univ Exeter, Coll Engn Math & Phys Sci, Exeter, Devon, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Macroscopic models; swarm guidance; partial differential equations; CONTROL DESIGN; TRAFFIC FLOW; SYSTEMS; DERIVATION; COVERAGE; WAVES;
D O I
10.1080/00207179.2020.1833250
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the problem of guidance of a swarm of Unmanned Aerial Vehicles (UAVs) to track the spatio-temporal evolution of a contaminant in 3-dimensional space is addressed. The contaminant and the UAV swarm are both modelled using Partial Differential Equations (PDEs). The spread of the contaminant is modelled using an advection PDE, while the PDE governing the UAV swarm is based on a nonlinear gas dynamic-like model. A dynamic inversion-based approach, combined with an optimisation formulation, is used to design optimal guidance laws that enable the UAV swarm to track the evolution of the contaminant, so that the swarm takes a configuration such that its spatial density distribution is proportional to the contaminant density. The robustness of the guidance laws to the unknown interaction effects among the UAVs within the swarm is assessed. The efficacy of the guidance laws is illustrated using simulations.
引用
收藏
页码:975 / 984
页数:10
相关论文
共 43 条
  • [1] Mistuning-Based Control Design to Improve Closed-Loop Stability Margin of Vehicular Platoons
    Barooah, Prabir
    Mehta, Prashant G.
    Hespanha, Joao P.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (09) : 2100 - 2113
  • [2] Dynamic boundary tracking using dynamic sensor nets
    Cao, Yuan
    Fierro, Rafael
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 703 - 708
  • [3] Forest fire monitoring with multiple small UAVs
    Casbeer, DW
    Beard, RW
    McLain, TW
    Li, SM
    Mehra, RK
    [J]. ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 3530 - 3535
  • [4] Robots for Environmental Monitoring Significant Advancements and Applications
    Dunbabin, Matthew
    Marques, Lino
    [J]. IEEE ROBOTICS & AUTOMATION MAGAZINE, 2012, 19 (01) : 24 - 39
  • [5] Estimation of Gaseous Plume Concentration with an Unmanned Aerial Vehicle
    Egorova, T.
    Gatsonis, N. A.
    Demetriou, M. A.
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2016, 39 (06) : 1314 - 1324
  • [6] Bilinear Controllability of a Class of Advection-Diffusion-Reaction Systems
    Elamvazhuthi, Karthik
    Kuiper, Hendrik
    Kawski, Matthias
    Berman, Spring
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (06) : 2282 - 2297
  • [7] PDE-based optimization for stochastic mapping and coverage strategies using robotic ensembles
    Elamvazhuthi, Karthik
    Kuiper, Hendrik
    Berman, Spring
    [J]. AUTOMATICA, 2018, 95 : 356 - 367
  • [8] Elamvazhuthi K, 2016, IEEE DECIS CONTR P, P2867, DOI 10.1109/CDC.2016.7798696
  • [9] Elamvazhuthi K, 2015, IEEE INT CONF ROBOT, P1822, DOI 10.1109/ICRA.2015.7139435
  • [10] Analysis of coordination in multi-agent systems through partial difference equations
    Ferrari-Trecate, G.
    Buffa, A.
    Gati, M.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (06) : 1058 - 1063