Lithium diffusion coefficient in LiMn2O4 thin films measured by secondary ion mass spectrometry with ion-exchange method

被引:43
作者
Kuwata, Naoaki [1 ]
Nakane, Masakatsu [1 ]
Miyazaki, Takamichi [2 ]
Mitsuishi, Kazutaka [3 ]
Kawamura, Junichi [1 ]
机构
[1] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Katahira 2-1-1, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Sch Engn, Aoba Ku, 6-6-11 Aramaki Aza Aoba, Sendai, Miyagi 9808579, Japan
[3] Natl Inst Mat Sci, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
关键词
SIMS; Tracer diffusion coefficient; Mixed conductor; Thin film; Lithium-ion battery; PULSED-LASER DEPOSITION; ELECTROCHEMICAL PROPERTIES; BATTERIES; SPECTROSCOPY; ELECTRODES;
D O I
10.1016/j.ssi.2018.03.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the lithium tracer diffusion coefficient (Ai') in spinel-type LiMn2O4 thin films is measured by secondary ion mass spectroscopy (SIMS) in the temperature range from 200 to 550 degrees C. An ion-exchange method is employed to prepare diffusion couples consisting of the stable isotopes Li-6 and Li-7. The isotope profiles were measured by SIMS analysis to determine D-Li* in the LiMn2O4 films. The Du* value was 1.4 x 10(-10) cm(2)/s at 300 degrees C and the activation energy was 0.52 eV, which is consistent with that of bulk LiMn2O4. The extrapolated value of D-Li(*) at 25 degrees C was on the order of 10(-14) cm(2)/s, which is smaller than the chemical diffusion coefficient of LixMn(2)O(4) measured by electrochemical methods. The temperature dependence of Du* can be explained by the vacancy diffusion model, in which the extrinsic and intrinsic regions of diffusion exist in the low- and high temperature regions, respectively.
引用
收藏
页码:266 / 271
页数:6
相关论文
共 26 条
[1]  
[Anonymous], 1979, MATH DIFFUSION
[2]   Implementing Realistic Geometry and Measured Diffusion Coefficients into Single Particle Electrode Modeling Based on Experiments with Single LiMn2O4 Spinel Particles [J].
Chung, M. D. ;
Seo, J. H. ;
Zhang, X. C. ;
Sastry, A. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (04) :A371-A378
[3]  
de Dompablo MEAY, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.064112
[4]   In situ Raman spectroscopy of single microparticle Li+-intercalation electrodes [J].
Dokko, K ;
Shi, QF ;
Stefan, IC ;
Scherson, DA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (46) :12549-12554
[5]   Effect of lithium-ion diffusibility on interfacial resistance of LiCoO2 thin film electrode modified with lithium tungsten oxides [J].
Hayashi, Tetsutaro ;
Miyazaki, Takamichi ;
Matsuda, Yasutaka ;
Kuwata, Naoaki ;
Saruwatari, Motoaki ;
Furuichi, Yuki ;
Kurihara, Koji ;
Kuzuo, Ryuichi ;
Kawamura, Junichi .
JOURNAL OF POWER SOURCES, 2016, 305 :46-53
[6]   Understanding the electronic and ionic conduction and lithium over-stoichiometry in LiMn2O4 spinel [J].
Hoang, Khang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (43) :18271-18280
[7]   Comparative μ+SR study of the zigzag chain compounds NaMn2O4 & LiMn2O4 [J].
Ikedo, Y. ;
Sugiyama, J. ;
Ofer, O. ;
Mansson, M. ;
Sakurai, H. ;
Takayama-Muromachi, E. ;
Ansaldo, E. J. ;
Brewer, J. H. ;
Chow, K. H. .
ADVANCED SCIENCE RESEARCH SYMPOSIUM 2009: POSITRON, MUON AND OTHER EXOTIC PARTICLE BEAMS FOR MATERIALS AND ATOMIC/MOLECULAR SCIENCES, 2010, 225
[8]   Direct measurement of nanoscale lithium diffusion in solid battery materials using radioactive tracer of 8Li [J].
Ishiyama, H. ;
Jeong, S. C. ;
Watanabe, Y. X. ;
Hirayama, Y. ;
Imai, N. ;
Jung, H. S. ;
Miyatake, H. ;
Oyaizu, M. ;
Osa, A. ;
Otokawa, Y. ;
Matsuda, M. ;
Nishio, K. ;
Makii, H. ;
Sato, T. K. ;
Kuwata, N. ;
Kawamura, J. ;
Ueno, H. ;
Kim, Y. H. ;
Kimura, S. ;
Mukai, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2016, 376 :379-381
[9]   Growth of LiMn2O4 thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries [J].
Julien, C ;
Haro-Poniatowski, E ;
Camacho-Lopez, MA ;
Escobar-Alarcon, L ;
Jimenez-Jarquin, J .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2000, 72 (01) :36-46
[10]   Review of 5-V electrodes for Li-ion batteries: status and trends [J].
Julien, C. M. ;
Mauger, A. .
IONICS, 2013, 19 (07) :951-988