Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis

被引:36
作者
Song, Jiangdian [1 ,2 ]
Liu, Zaiyi [3 ]
Zhong, Wenzhao [4 ]
Huang, Yanqi [3 ]
Ma, Zelan [3 ]
Dong, Di [2 ,5 ]
Liang, Changhong [3 ]
Tian, Jie [2 ,5 ]
机构
[1] Northeastern Univ, Sinodutch Biomed & Informat Engn Sch, Shenyang, Liaoning, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Key Lab Mol Imaging, Beijing 100190, Peoples R China
[3] Guangdong Gen Hosp, Guangdong Acad Med Sci, Dept Radiol, 106 Zhongshan Er Rd, Guangzhou 510080, Guangdong, Peoples R China
[4] Guangdong Acad Med Sci, Guangdong Lung Canc Inst, Guangdong Gen Hosp, 106 Zhongshan Er Lu, Guangzhou 510080, Peoples R China
[5] Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
TEXTURE ANALYSIS; TUMOR HETEROGENEITY; SURVIVAL; FEATURES; PREDICTION; PARAMETERS; CARCINOMA; BIOMARKER; NODULES; STAGE;
D O I
10.1038/srep38282
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This was a retrospective study to investigate the predictive and prognostic ability of quantitative computed tomography phenotypic features in patients with non-small cell lung cancer (NSCLC). 661 patients with pathological confirmed as NSCLC were enrolled between 2007 and 2014. 592 phenotypic descriptors was automatically extracted on the pre-therapy CT images. Firstly, support vector machine (SVM) was used to evaluate the predictive value of each feature for pathology and TNM clinical stage. Secondly, Cox proportional hazards model was used to evaluate the prognostic value of these imaging signatures selected by SVM which subjected to a primary cohort of 138 patients, and an external independent validation of 61 patients. The results indicated that predictive accuracy for histopathology, N staging, and overall clinical stage was 75.16%, 79.40% and 80.33%, respectively. Besides, Cox models indicated the signatures selected by SVM: "correlation of co-occurrence after wavelet transform" was significantly associated with overall survival in the two datasets (hazard ratio [HR]: 1.65, 95% confidence interval [CI]: 1.41-2.75, p = 0.010; and HR: 2.74, 95% CI: 1.10-6.85, p = 0.027, respectively). Our study indicates that the phenotypic features might provide some insight in metastatic potential or aggressiveness for NSCLC, which potentially offer clinical value in directing personalized therapeutic regimen selection for NSCLC.
引用
收藏
页数:9
相关论文
共 35 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Prognostic Value of Computed Tomography Texture Features in Non-Small Cell Lung Cancers Treated With Definitive Concomitant Chemoradiotherapy [J].
Ahn, Su Yeon ;
Park, Chang Min ;
Park, Sang Joon ;
Kim, Hak Jae ;
Song, Changhoon ;
Lee, Sang Min ;
McAdams, Holman Page ;
Goo, Jin Mo .
INVESTIGATIVE RADIOLOGY, 2015, 50 (10) :719-725
[3]  
Aiping Qu, 2014, 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), P218, DOI 10.1109/BIBM.2014.6999158
[4]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[5]   Reproducibility and Prognosis of Quantitative Features Extracted from CT Images [J].
Balagurunathan, Yoganand ;
Gu, Yuhua ;
Wang, Hua ;
Kumar, Virendra ;
Grove, Olya ;
Hawkins, Sam ;
Kim, Jongphil ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Gatenby, Robert A. ;
Gillies, Robert J. .
TRANSLATIONAL ONCOLOGY, 2014, 7 (01) :72-87
[6]   A class of weighted log-rank tests for survival data when the event is rare [J].
Buyske, S ;
Fagerstrom, R ;
Ying, ZL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (449) :249-258
[7]   A fully automated method for lung nodule detection from postero-anterior chest radiographs [J].
Campadelli, Paola ;
Casiraghi, Elena ;
Artioli, Diana .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (12) :1588-1603
[8]   Integrated imaging of non-small cell lung cancer recurrence: CT and PET-CT findings, possible pitfalls and risk of recurrence criteria [J].
Caulo, Andrea ;
Mirsadraee, Saeed ;
Maggi, Fabio ;
Leccisotti, Lucia ;
van Beek, Edwin J. R. ;
Bonomo, Lorenzo .
EUROPEAN RADIOLOGY, 2012, 22 (03) :588-606
[9]   Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images [J].
Chang, Chuan-Yu ;
Chen, Shao-Jer ;
Tsai, Ming-Fong .
PATTERN RECOGNITION, 2010, 43 (10) :3494-3506
[10]   Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis [J].
Chicklore, Sugama ;
Goh, Vicky ;
Siddique, Musib ;
Roy, Arunabha ;
Marsden, Paul K. ;
Cook, Gary J. R. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2013, 40 (01) :133-140