A two-level method for mimetic finite difference discretizations of elliptic problems

被引:4
作者
Antonietti, Paola F. [1 ]
Verani, Marco [1 ]
Zikatanov, Ludmil [2 ,3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX, I-20133 Milan, Italy
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
基金
美国国家科学基金会;
关键词
Mimetic finite differences; Two-level preconditioners; DIFFUSION-PROBLEMS; STOKES PROBLEM; CONVERGENCE; APPROXIMATION; ELEMENTS; SPACES;
D O I
10.1016/j.camwa.2015.06.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze a two-level method for mimetic finite difference approximations of second order elliptic boundary value problems. We prove that the two-level algorithm is uniformly convergent, i.e., the number of iterations needed to achieve convergence is uniformly bounded independently of the characteristic size of the underlying partition. We also show that the resulting scheme provides a uniform preconditioner with respect to the number of degrees of freedom. Numerical results that validate the theory are also presented. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2674 / 2687
页数:14
相关论文
共 53 条
[11]   Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1872-1896
[12]   A family of mimetic finite difference methods on polygonal and polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Simoncini, V .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (10) :1533-1551
[13]   A new discretization methodology for diffusion problems on generalized polyhedral meshes [J].
Brezzi, Franco ;
Lipnikov, Konstantin ;
Shashkov, Mikhail ;
Simoncini, Valeria .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) :3682-3692
[14]   Virtual Element Methods for plate bending problems [J].
Brezzi, Franco ;
Marini, L. Donatella .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 :455-462
[15]   Innovative mimetic discretizations for electromagnetic problems [J].
Brezzi, Franco ;
Buffa, Annalisa .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (06) :1980-1987
[16]   MIMETIC FINITE DIFFERENCES FOR ELLIPTIC PROBLEMS [J].
Brezzi, Franco ;
Buffa, Annalisa ;
Lipnikov, Konstantin .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02) :277-295
[17]   Flux reconstruction and solution post-processing in mimetic finite difference methods [J].
Cangiani, Andrea ;
Manzini, Gianmarco .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (9-12) :933-945
[18]   hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes [J].
Cangiani, Andrea ;
Georgoulis, Emmanuil H. ;
Houston, Paul .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (10) :2009-2041
[19]   CONVERGENCE ANALYSIS OF THE MIMETIC FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS [J].
Cangiani, Andrea ;
Manzini, Gianmarco ;
Russo, Alessandro .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) :2612-2637
[20]   CONVEX PARTITIONS OF POLYHEDRA - A LOWER BOUND AND WORST-CASE OPTIMAL ALGORITHM [J].
CHAZELLE, B .
SIAM JOURNAL ON COMPUTING, 1984, 13 (03) :488-507