A two-level method for mimetic finite difference discretizations of elliptic problems

被引:4
作者
Antonietti, Paola F. [1 ]
Verani, Marco [1 ]
Zikatanov, Ludmil [2 ,3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX, I-20133 Milan, Italy
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
基金
美国国家科学基金会;
关键词
Mimetic finite differences; Two-level preconditioners; DIFFUSION-PROBLEMS; STOKES PROBLEM; CONVERGENCE; APPROXIMATION; ELEMENTS; SPACES;
D O I
10.1016/j.camwa.2015.06.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze a two-level method for mimetic finite difference approximations of second order elliptic boundary value problems. We prove that the two-level algorithm is uniformly convergent, i.e., the number of iterations needed to achieve convergence is uniformly bounded independently of the characteristic size of the underlying partition. We also show that the resulting scheme provides a uniform preconditioner with respect to the number of degrees of freedom. Numerical results that validate the theory are also presented. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2674 / 2687
页数:14
相关论文
共 53 条
[1]  
[Anonymous], NUMERICAL MATH ADV A
[2]   Mimetic finite differences for nonlinear and control problems [J].
Antonietti, P. F. ;
da Veiga, L. Beirao ;
Bigoni, N. ;
Verani, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (08) :1457-1493
[3]  
Antonietti P. F., 2014, 552014 MOX
[4]   MULTIGRID ALGORITHMS FOR hp-DISCONTINUOUS GALERKIN DISCRETIZATIONS OF ELLIPTIC PROBLEMS [J].
Antonietti, Paola F. ;
Sarti, Marco ;
Verani, Marco .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) :598-618
[5]   Mimetic finite difference approximation of quasilinear elliptic problems [J].
Antonietti, Paola F. ;
Bigoni, Nadia ;
Verani, Marco .
CALCOLO, 2015, 52 (01) :45-67
[6]   A MIMETIC DISCRETIZATION OF ELLIPTIC OBSTACLE PROBLEMS [J].
Antonietti, Paola F. ;
da Veiga, Lourenco Beirao ;
Verani, Marco .
MATHEMATICS OF COMPUTATION, 2013, 82 (283) :1379-1400
[7]   Mimetic Discretizations of Elliptic Control Problems [J].
Antonietti, Paola F. ;
Bigoni, Nadia ;
Verani, Marco .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (01) :14-27
[8]   HIERARCHICAL A POSTERIORI ERROR ESTIMATORS FOR THE MIMETIC DISCRETIZATION OF ELLIPTIC PROBLEMS [J].
Antonietti, Paola F. ;
da Veiga, Lourenco Beirao ;
Lovadina, Carlo ;
Verani, Marco .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :654-675
[9]  
Bramble James H., 1993, Pitman Research Notes in Mathematics Series, V294
[10]   Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02) :275-297