PARALLEL AUXILIARY SPACE AMG FOR H(curl) PROBLEMS

被引:90
作者
Kolev, Tzanio V. [1 ]
Vassilevski, Panayot S. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Ctr Appl sci Comp, Livermore, CA 94551 USA
关键词
Parallel algebraic multigrid; H(curl) problems; Edge elements; Auxiliary space preconditioning; ALGEBRAIC MULTIGRID METHOD; MAGNETIC DIFFUSION; DISCRETIZATION; H(DIV);
D O I
10.4208/jcm.2009.27.5.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we review a number of auxiliary space based preconditioners for the second order definite and semi-definite Maxwell problems discretized with the lowest order Nedelec finite elements. We discuss the parallel implementation of the most promising of these methods, the ones derived from the recent Hiptmair-Xu (HX) auxiliary space decomposition [Hiptmair and Xu, SIAM J. Numer. Anal., 45 (2007), pp. 2483-2509]. An extensive set of numerical experiments demonstrate the scalability of our implementation on large-scale H(curl) problems.
引用
收藏
页码:604 / 623
页数:20
相关论文
共 28 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]  
[Anonymous], 1970, PRINCETON MATH SERIE
[4]  
[Anonymous], HYPRE HIGH PERFORMAN
[5]  
[Anonymous], 2006, Technical report SAND2006-2649
[6]  
Arnold DN, 2000, NUMER MATH, V85, P197, DOI 10.1007/s002110000137
[7]  
BOCHEV P, 2007, SIAM J SCI IN PRESS
[8]   An improved algebraic multigrid method for solving Maxwell's equations [J].
Bochev, PB ;
Garasi, CJ ;
Hu, JJ ;
Robinson, AC ;
Tuminaro, RS .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (02) :623-642
[9]  
Bochev PB, 2003, ELECTRON T NUMER ANA, V15, P186
[10]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77