Strong ion difference in urine: new perspectives in acid-base assessment

被引:28
作者
Gattinoni, Luciano [1 ]
Carlesso, Eleonora
Cadringher, Paolo
Caironi, Pietro
机构
[1] Univ Milan, Policlin Mangiagalli Regina Elena Milano, Dipartimento Anestesia Rianimaz & Terapia Dolore, Fdn IRCCS,Osped Maggiore,Ist Anestesiol & Rianima, Milan, Italy
[2] Univ Milan, Ist Anestesiol & Rianimaz, Milan, Italy
来源
CRITICAL CARE | 2006年 / 10卷 / 02期
关键词
D O I
10.1186/cc4890
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
The plasmatic strong ion difference (SID) is the difference between positively and negatively charged strong ions. At pH 7.4, temperature 37 degrees C and partial carbon dioxide tension 40 mmHg, the ideal value of SID is 42 mEq/ l. The buffer base is the sum of negatively charged weak acids ([HCO3-], [A(-)], [H2PO4-]) and its normal value is 42 mEq/ l. According to the law of electroneutrality, the amount of positive and negative charges must be equal, and therefore the SID value is equal to the buffer base value. The easiest assessment of metabolic acidosis/alkalosis relies on the base excess calculation: buffer base(actual) - buffer base(ideal) = SIDactual - SIDideal. The SID approach allows one to appreciate the relationship between acid - base and electrolyte equilibrium from a unique perspective, and here we describe a comprehensive model of this equilibrium. The extracellular volume is characterized by a given SID, which is a function of baseline conditions, endogenous and exogenous input ( endogenous production and infusion), and urinary output. Of note, volume modifications vary the concentration of charges in the solution. An expansion of extracellular volume leads to acidosis ( SID decreases), whereas a contraction of extracellular volume leads to alkalosis ( SID increases). A thorough understanding of acid - base equilibrium mandates recognition of the importance of urinary SID.
引用
收藏
页数:3
相关论文
共 15 条
[1]  
[Anonymous], 1981, UNDERSTAND ACID BASE
[2]   THE USE THE URINARY ANION GAP IN THE DIAGNOSIS OF HYPERCHLOREMIC METABOLIC-ACIDOSIS [J].
BATLLE, DC ;
HIZON, M ;
COHEN, E ;
GUTTERMAN, C ;
GUPTA, R .
NEW ENGLAND JOURNAL OF MEDICINE, 1988, 318 (10) :594-599
[3]   An analysis of renal tubular acidosis by the Stewart method [J].
Corey, HE ;
Vallo, A ;
Rodríguez-Soriano, J .
PEDIATRIC NEPHROLOGY, 2006, 21 (02) :206-211
[4]   The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU [J].
Cusack, RJ ;
Rhodes, A ;
Lochhead, P ;
Jordan, B ;
Perry, S ;
Ball, JAS ;
Grounds, RM ;
Bennett, ED .
INTENSIVE CARE MEDICINE, 2002, 28 (07) :864-869
[5]   STEWART QUANTITATIVE ACID-BASE CHEMISTRY - APPLICATIONS IN BIOLOGY AND MEDICINE [J].
FENCL, V ;
LEITH, DE .
RESPIRATION PHYSIOLOGY, 1993, 91 (01) :1-16
[6]   Determinants of blood pH in health and disease [J].
Kellum, JA .
CRITICAL CARE, 2000, 4 (01) :6-14
[7]   Acetazolamide-mediated decrease in strong ion difference accounts for the correction of metabolic alkalosis in critically ill patients [J].
Moviat, Miriam ;
Pickkers, Peter ;
van der Voort, Peter H. J. ;
van der Hoeven, Johannes G. .
CRITICAL CARE, 2006, 10 (01)
[8]   Clinical review: Renal tubular acidosis - a physicochemical approach [J].
Ring, T ;
Frische, S ;
Nielsen, S .
CRITICAL CARE, 2005, 9 (06) :573-580
[9]   Dietary cation-anion difference and the health and production of pasture-fed dairy cows 2. Nonlactating periparturient cows [J].
Roche, JR ;
Dailey, D ;
Moate, P ;
Grainger, C ;
Rath, M ;
O'Mara, F .
JOURNAL OF DAIRY SCIENCE, 2003, 86 (03) :979-987
[10]   Dietary cation-anion difference and the health and production of pasture-fed dairy cows. 1. Dairy cows in early lactation [J].
Roche, JR ;
Dailey, D ;
Moate, P ;
Grainger, C ;
Rath, M ;
O'Mara, F .
JOURNAL OF DAIRY SCIENCE, 2003, 86 (03) :970-978