A unified framework for semi-supervised PU learning

被引:3
作者
Hu, Haoji [1 ]
Sha, Chaofeng [2 ]
Wang, Xiaoling [1 ]
Zhou, Aoying [1 ]
机构
[1] E China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
来源
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS | 2014年 / 17卷 / 04期
关键词
Data mining; Semi-supervised learning; PU learning;
D O I
10.1007/s11280-013-0215-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional supervised classifiers use only labeled data (features/label pairs) as the training set, while the unlabeled data is used as the testing set. In practice, it is often the case that the labeled data is hard to obtain and the unlabeled data contains the instances that belong to the predefined class but not the labeled data categories. This problem has been widely studied in recent years and the semi-supervised PU learning is an efficient solution to learn from positive and unlabeled examples. Among all the semi-supervised PU learning methods, it is hard to choose just one approach to fit all unlabeled data distribution. In this paper, a new framework is designed to integrate different semi-supervised PU learning algorithms in order to take advantage of existing methods. In essence, we propose an automatic KL-divergence learning method by utilizing the knowledge of unlabeled data distribution. Meanwhile, the experimental results show that (1) data distribution information is very helpful for the semi-supervised PU learning method; (2) the proposed framework can achieve higher precision when compared with the state-of-the-art method.
引用
收藏
页码:493 / 510
页数:18
相关论文
共 50 条
  • [21] SSRCNN: A Semi-Supervised Learning Framework for Signal Recognition
    Dong, Yihong
    Jiang, Xiaohan
    Cheng, Lei
    Shi, Qingjiang
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (03) : 780 - 789
  • [22] On semi-supervised learning
    Cholaquidis, A.
    Fraiman, R.
    Sued, M.
    TEST, 2020, 29 (04) : 914 - 937
  • [23] On semi-supervised learning
    A. Cholaquidis
    R. Fraiman
    M. Sued
    TEST, 2020, 29 : 914 - 937
  • [24] Graph Diffusion & PCA Framework for Semi-supervised Learning
    Avrachenkov, Konstantin
    Boisbunon, Aurelie
    Kamalov, Mikhail
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 15, 2021, 12931 : 25 - 39
  • [25] Semi-supervised learning in knowledge discovery
    Klose, A
    Kruse, R
    FUZZY SETS AND SYSTEMS, 2005, 149 (01) : 209 - 233
  • [26] An accuracy-maximization learning framework for supervised and semi-supervised imbalanced data
    Wang, Guanjin
    Wong, Kok Wai
    KNOWLEDGE-BASED SYSTEMS, 2022, 255
  • [27] Active learning and semi-supervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion
    Yu, Dong
    Varadarajan, Balakrishnan
    Deng, Li
    Acero, Alex
    COMPUTER SPEECH AND LANGUAGE, 2010, 24 (03) : 433 - 444
  • [28] Semi-supervised graph learning framework for apicomplexan parasite classification
    Ha, Yan
    Meng, Xiangjie
    Du, Zeyu
    Tian, Junfeng
    Yuan, Yu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 81
  • [29] A Boosted Semi-supervised Learning Framework for Web Page Filtering
    He, Zhu
    Li, Xi
    Hu, Weiming
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 2133 - 2136
  • [30] An Enhancing Semi-Supervised Federated Learning Framework for Internet of Vehicles
    Su, Xiangqing
    Huo, Yan
    Wang, Xiaoxuan
    Jing, Tao
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,