Reverse Stein-Weiss Inequalities on the Upper Half Space and the Existence of Their Extremals

被引:23
作者
Chen, Lu [2 ]
Lu, Guozhen [3 ]
Tao, Chunxia [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[3] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
Sharp Constants; Existence of Extremal Functions; Reverse Stein-Weiss Inequality; Reverse Hardy-Littlewood-Sobolev Inequality; Pohozaev Identity; Stereographic Projection; Upper Half Space R-+(n); HARDY-LITTLEWOOD-SOBOLEV; FRACTIONAL INTEGRALS; WEIGHTED INEQUALITIES; PITTS INEQUALITY;
D O I
10.1515/ans-2018-2038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is four-fold. First, we employ the reverse weighted Hardy inequality in the form of high dimensions to establish the following reverse Stein Weiss inequality on the upper half space: integral(R+n) integral(partial derivative R+n) vertical bar x vertical bar(alpha)vertical bar x-y vertical bar(lambda)f(x)g(y)vertical bar y vertical bar(beta) dy dx >= C-n,C-alpha,C-beta,C-p,C-q'parallel to f parallel to(Lq'(R+n))parallel to g parallel to(L)p((partial derivative R+n)) for any nonnegative functions f is an element of L-q' (R-+(n)), g is an element of L-p(partial derivative R-+(n)), and p, q' is an element of (0,1), beta < 1-n/p' or alpha < -n/q, lambda > 0 satisfying n-1/n 1/p + 1/q' - alpha + beta + lambda - 1/n = 2. Second, we show that the best constant of the above inequality can be attained. Third, for a weighted system analogous to the Euler-Lagrange equations of the reverse Stein-Weiss inequality, we obtain the necessary conditions of existence for any positive solutions using the Pohozaev identity. Finally, in view of the stereographic projection, we give a spherical form of the Stein-Weiss inequality and reverse Stein-Weiss inequality on the upper half space R-+(n).
引用
收藏
页码:475 / 494
页数:20
相关论文
共 41 条
[1]  
[Anonymous], 1993, PRINCETON MATH SER
[2]   PITTS INEQUALITY AND THE UNCERTAINTY PRINCIPLE [J].
BECKNER, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1897-1905
[3]   Sharp inequalities and geometry manifolds [J].
Beckner, W .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (Suppl 1) :825-836
[4]  
Beckner W., 1995, ESSAYS FOURIER ANAL, V42, P36
[5]   Weighted inequalities and Stein-Weiss potentials [J].
Beckner, William .
FORUM MATHEMATICUM, 2008, 20 (04) :587-606
[6]  
Beckner W, 2008, P AM MATH SOC, V136, P1871
[7]   Functionals for Multilinear Fractional Embedding [J].
Beckner, William .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (01) :1-28
[8]  
Beckner W, 2012, MATH RES LETT, V19, P175
[9]   Hardy-Littlewood-Sobolev inequalities via fast diffusion flows [J].
Carlen, Eric A. ;
Carrillo, Jose A. ;
Loss, Michael .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (46) :19696-19701
[10]   A Sharp Inequality for the Strichartz Norm [J].
Carneiro, Emanuel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (16) :3127-3145