Energy landscapes of functional proteins are inherently risky

被引:83
作者
Gershenson, Anne [1 ]
Gierasch, Lila M. [1 ,2 ]
Pastore, Annalisa [3 ]
Radford, Sheena E. [4 ]
机构
[1] Univ Massachusetts, Dept Biochem & Mol Biol, Amherst, MA 01003 USA
[2] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA
[3] Kings Coll London, Dept Clin Neurosci, London WC2R 2LS, England
[4] Univ Leeds, Sch Mol & Cellular Biol, Astbury Ctr Struct Mol Biol, Leeds, W Yorkshire, England
基金
英国惠康基金; 英国医学研究理事会; 欧洲研究理事会; 美国国家卫生研究院;
关键词
ACID-BINDING PROTEIN; MAJOR-HISTOCOMPATIBILITY-COMPLEX; FATTY-ACID; JOSEPHIN DOMAIN; RETINOIC ACID; STRUCTURAL BASIS; ALPHA(1)-PROTEINASE INHIBITOR; PHYSIOLOGICAL CONDITIONS; CRYSTAL-STRUCTURE; AMYLOID FORMATION;
D O I
10.1038/nchembio.1670
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Evolutionary pressure for protein function leads to unavoidable sampling of conformational states that are at risk of misfolding and aggregation. The resulting tension between functional requirements and the risk of misfolding and/or aggregation in the evolution of proteins is becoming more and more apparent. One outcome of this tension is sensitivity to mutation, in which only subtle changes in sequence that may be functionally advantageous can tip the delicate balance toward protein aggregation. Similarly, increasing the concentration of aggregation-prone species by reducing the ability to control protein levels or compromising protein folding capacity engenders increased risk of aggregation and disease. In this Perspective, we describe examples that epitomize the tension between protein functional energy landscapes and aggregation risk. Each case illustrates how the energy landscapes for the at-risk proteins are sculpted to enable them to perform their functions and how the risks of aggregation are minimized under cellular conditions using a variety of compensatory mechanisms.
引用
收藏
页码:884 / 891
页数:8
相关论文
共 108 条
[1]   Trinucleotide repeats: a structural perspective [J].
Almeida, Bruno ;
Fernandes, Sara ;
Abreu, Isabel A. ;
Macedo-Ribeiro, Sandra .
FRONTIERS IN NEUROLOGY, 2013, 4
[2]   Functional Unfolding of α1-Antitrypsin Probed by Hydrogen-Deuterium Exchange Coupled with Mass Spectrometry [J].
Baek, Je-Hyun ;
Yang, Won Suk ;
Lee, Cheolju ;
Yu, Myeong-Hee .
MOLECULAR & CELLULAR PROTEOMICS, 2009, 8 (05) :1072-1081
[3]  
BANASZAK L, 1994, ADV PROTEIN CHEM, V45, P89
[4]   Intracellular lipid-binding proteins and their genes [J].
Bernlohr, DA ;
Simpson, MA ;
Hertzel, AV ;
Banaszak, LJ .
ANNUAL REVIEW OF NUTRITION, 1997, 17 :277-303
[5]   Localization of the RAR interaction domain of cellular retinoic acid binding protein-II [J].
Budhu, A ;
Gillilan, R ;
Noy, N .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 305 (04) :939-949
[6]   Early Folding Events Protect Aggregation-Prone Regions of a β-Rich Protein [J].
Budyak, Ivan L. ;
Krishnan, Beena ;
Marcelino-Cruz, Anna M. ;
Ferrolino, Mylene C. ;
Zhuravleva, Anastasia ;
Gierasch, Lila M. .
STRUCTURE, 2013, 21 (03) :476-485
[7]   Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited [J].
Cai, Jun ;
Luecke, Christian ;
Chen, Zhongjing ;
Qiao, Ye ;
Klimtchuk, Elena ;
Hamilton, James A. .
BIOPHYSICAL JOURNAL, 2012, 102 (11) :2585-2594
[8]   BIOLOGICAL IMPLICATIONS OF A 3-ANGSTROM STRUCTURE OF DIMERIC ANTITHROMBIN [J].
CARRELL, RW ;
STEIN, PE ;
WARDELL, MR ;
FERMI, G .
STRUCTURE, 1994, 2 (04) :257-270
[9]   Structural Instability Tuning as a Regulatory Mechanism in Protein-Protein Interactions [J].
Chen, Li ;
Balabanidou, Vassilia ;
Remeta, David P. ;
Minetti, Conceicao A. S. A. ;
Portaliou, Athina G. ;
Economou, Anastassios ;
Kalodimos, Charalampos G. .
MOLECULAR CELL, 2011, 44 (05) :734-744
[10]   A partially structured species of β2-microglobulin is significantly populated under physiological conditions and involved in fibrillogenesis [J].
Chiti, F ;
De Lorenzi, E ;
Grossi, S ;
Mangione, P ;
Giorgetti, S ;
Caccialanza, G ;
Dobson, CM ;
Merlini, G ;
Ramponi, G ;
Bellotti, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (50) :46714-46721