Ultrathin WO3•0.33H2O Nanotubes for CO2 Photoreduction to Acetate with High Selectivity

被引:281
作者
Sun, Songmei [1 ]
Watanabe, Motonori [1 ]
Wu, Ji [1 ]
An, Qi [2 ]
Ishihara, Tatsumi [1 ]
机构
[1] Kyushu Univ, Int Inst Carbon Neutral Energy Res I2CNER, Fukuoka, Fukuoka 8190395, Japan
[2] Univ Nevada, Dept Chem & Mat Engn, Reno, NV 89557 USA
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; PHOTOCATALYTIC REDUCTION; ELECTROCHEMICAL REDUCTION; PHOTOCHEMICAL REDUCTION; OXIDE SEMICONDUCTORS; QUANTUM CONFINEMENT; SOLAR-ENERGY; SURFACE; TIO2; WO3;
D O I
10.1021/jacs.8b03316
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Artificial photosynthesis from CO2 reduction is severely hampered by the kinetically challenging multi-electron reaction process. Oxygen vacancies (Vo) with abundant localized electrons have great potential to overcome this limitation. However, surface Vo usually have low concentrations and are easily oxidized, causing them to lose their activities. For practical application of CO2 photoreduction, fabricating and enhancing the stability of Vo on semiconductors is indispensable. Here we report the first synthesis of ultrathin WO3 center dot 0.33H(2)O nanotubes with a large amount of exposed surface Vo sites, which can realize excellent and stable CO2 photoreduction to CH3COOH in pure water under solar light. The selectivity for acetum generation is up to 85%, with an average productivity of about 9.4 mu mol g(-1) h(-1). More importantly, Vo in the catalyst are sustainable, and their concentration was not decreased even after 60 h of reaction. Quantum chemical calculations and in situ DRIFT studies revealed that the main reaction pathway might be CO2 -> (COOH)-C-center dot -> (COOH)(2) -> CH3COOH.
引用
收藏
页码:6474 / 6482
页数:9
相关论文
共 52 条
[1]   Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes [J].
Arai, Takeo ;
Sato, Shunsuke ;
Kajino, Tsutomu ;
Morikawa, Takeshi .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1274-1282
[2]   Ultrathin, Single-Crystal WO3 Nanosheets by Two-Dimensional Oriented Attachment toward Enhanced Photocatalystic Reduction of CO2 into Hydrocarbon Fuels under Visible Light [J].
Chen, Xiaoyu ;
Zhou, Yong ;
Liu, Qi ;
Li, Zhengdao ;
Liu, Jianguo ;
Zou, Zhigang .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (07) :3372-3377
[3]   Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances [J].
Cheng, Hefeng ;
Wen, Meicheng ;
Ma, Xiangchao ;
Kuwahara, Yasutaka ;
Mori, Kohsuke ;
Dai, Ying ;
Huang, Baibiao ;
Yamashita, Hiromi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (29) :9316-9324
[4]   Surface characteristics of ZnS nanocrystallites relating to their photocatalysis for CO2 reduction [J].
Fujiwara, H ;
Hosokawa, H ;
Murakoshi, K ;
Wada, Y ;
Yanagida, S .
LANGMUIR, 1998, 14 (18) :5154-5159
[5]   Co3O4 Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visible-Light Photocatalytic Reduction of CO2 [J].
Gao, Chao ;
Meng, Qiangqiang ;
Zhao, Kun ;
Yin, Huajie ;
Wang, Dawei ;
Guo, Jun ;
Zhao, Shenlong ;
Chang, Lin ;
He, Meng ;
Li, Qunxiang ;
Zhao, Huijun ;
Huang, Xingjiu ;
Gao, Yan ;
Tang, Zhiyong .
ADVANCED MATERIALS, 2016, 28 (30) :6485-+
[6]   Photoexcited Surface Frustrated Lewis Pairs for Heterogeneous Photocatalytic CO2 Reduction [J].
Ghuman, Kulbir Kaur ;
Hoch, Laura B. ;
Szymanski, Paul ;
Loh, Joel Y. Y. ;
Kherani, Nazir P. ;
E-Sayed, Mostafa A. ;
Ozin, Geoffrey A. ;
Singh, Chandra Veer .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (04) :1206-1214
[7]   Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors [J].
Habisreutinger, Severin N. ;
Schmidt-Mende, Lukas ;
Stolarczyk, Jacek K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (29) :7372-7408
[9]   PHOTOELECTROCATALYTIC REDUCTION OF CARBON-DIOXIDE IN AQUEOUS SUSPENSIONS OF SEMICONDUCTOR POWDERS [J].
INOUE, T ;
FUJISHIMA, A ;
KONISHI, S ;
HONDA, K .
NATURE, 1979, 277 (5698) :637-638
[10]   New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy [J].
Ji, Yongfei ;
Luo, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (49) :15896-15902