On Diophantine approximations of Ramanujan type q-continued fractions

被引:6
作者
Matala-aho, Tapani [1 ]
Merila, Ville [1 ]
机构
[1] Oulun Yliopisto, Matematiikan Laitos, Oulu 90014, Finland
关键词
Irrationality measure; q-Continued fraction; q-Series; Q-DIFFERENCE EQUATIONS; Q-SERIES; VALUES;
D O I
10.1016/j.jnt.2008.06.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We shall consider arithmetical properties of the q-continued fractions K-n=1(infinity) q(sn)(S-0 + S(1)q(n) + ... + S(h)q(hn))/T-0 + T(1)q(n) + . . . + T(l)q(ln), S-i, T-i, q is an element of K, vertical bar q vertical bar(v) < 1, and some related continued fractions where v is a fixed valuation of an algebraic number field 165 and s, h, l is an element of N. In particular, we get sharp irrationality measures for certain Ramanujan, Ramanujan-Selberg, Eisenstein and Tasoev continued fractions. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1044 / 1055
页数:12
相关论文
共 20 条
[1]  
Amou M, 2002, DEV MATH, V8, P15
[2]  
Andrews G.E., 2005, Ramanujan's Lost Notebook
[3]   On Ramanujan's continued fraction for (q2; q3)∞/(q; q3)∞ [J].
Andrews, GE ;
Berndt, BC ;
Sohn, J ;
Yee, AJ ;
Zaharescu, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (06) :2397-2411
[4]  
ANDREWS GE, 1992, MEM AM MATH SOC, V99, pR3
[5]   A q-continued fraction [J].
Bowman, D. ;
Mc Laughlin, J. ;
Wyshinski, N. J. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (04) :523-547
[6]   A THEOREM OF WHOLE FUNCTIONS AND IRRATIONAL EXPRESSIONS [J].
BUNDSCHUH, P .
INVENTIONES MATHEMATICAE, 1970, 9 (02) :175-+
[7]   Modular forms and Eisenstein's continued fractions [J].
Folsom, A .
JOURNAL OF NUMBER THEORY, 2006, 117 (02) :279-291
[8]   Hurwitz and Tasoev continued fractions [J].
Komatsu, T .
MONATSHEFTE FUR MATHEMATIK, 2005, 145 (01) :47-60
[9]   Tasoev's continued fractions and Rogers-Ramanujan continued fractions [J].
Komatsu, T .
JOURNAL OF NUMBER THEORY, 2004, 109 (01) :27-40
[10]   On Hurwitzian and Tasoev's continued fractions [J].
Komatsu, T .
ACTA ARITHMETICA, 2003, 107 (02) :161-177