Unsupervised unmixing of hyperspectral imagery using the positive matrix factorization

被引:0
作者
Masalmah, Yahya M. [1 ]
Velez-Reyes, Miguel [1 ]
机构
[1] Ctr Subsurface Sensing & Imaging Syst, Lab Appl Remote Sensing & Image Proc, Univ Puerto Rico Mayaguez Campus POB 9042, Mayaguez, PR 00681 USA
来源
INDEPENDENT COMPONENT ANALYSES, WAVELETS, UNSUPERVISED SMART SENSORS, AND NEURAL NETWORKS IV | 2006年 / 6247卷
关键词
hyperspectral imagery; spectral unmixing; positive matrix factorization;
D O I
10.1117/12.667976
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an approach for simultaneous determination of endmembers and their abundances in hyperspectral imagery unmixing using a constrained positive matrix factorization (PMF). The algorithm presented here solves the constrained PMF using Gauss-Seidel method. This algorithm alternates between the endmembers matrix updating step and the abundance estimation step until convergence is achieved. Preliminary results using a subset of a HYPERION image taken in SW Puerto Rico are presented. These results show the potential of the proposed method to solve the unsupervised unmixing problem.
引用
收藏
页数:9
相关论文
共 15 条
[1]  
CHANG CI, 2003, ALGORITHMS TECHNOLOG, V5093
[2]  
DONOHO D, NIPS 2003 WORKSH ICA
[3]  
HU YH, 1999, IEEE T GEOSCIENCE RE, V37
[4]  
Keshava N., 2003, Lincoln Laboratory Journal, V14, P55
[5]   Spectral unmixing [J].
Keshava, N ;
Mustard, JF .
IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (01) :44-57
[6]  
Lawson C.L., 1974, SOLVING LEAST SQUARE
[7]   Learning the parts of objects by non-negative matrix factorization [J].
Lee, DD ;
Seung, HS .
NATURE, 1999, 401 (6755) :788-791
[8]  
Lee DD, 1997, ADV NEUR IN, V9, P515
[9]  
Lee DD, 2001, ADV NEUR IN, V13, P556
[10]  
Nascimento JMP, 2003, LECT NOTES COMPUT SC, V2652, P626