Pre-wavelet bases in Lebesgue spaces

被引:2
作者
Gun, Chiou-Yueh [1 ]
Wang, Kai-Cheng [2 ]
Yang, Chi-I [2 ]
Chang, Kuei-Fang [3 ]
机构
[1] Nankai Univ Technol, Dept Mech Engn, Nantou 54243, Taiwan
[2] Feng Chia Univ, Program Mech & Aeronaut Engn, Taichung 40724, Taiwan
[3] Feng Chia Univ, Dept Appl Math, Taichung 40724, Taiwan
关键词
bijectivity; Calderon-Zygmund decomposition theorem; frame; Riesz basis; semi-orthogoal; unconditional basis; wavelet; Wiener's lemma; COMPACTLY SUPPORTED WAVELETS; ORTHONORMAL BASES; FRAME; LOCALIZATION; ONDELETTES;
D O I
10.1186/s13660-015-0811-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under the decay condition, we have constructed the dual wavelet basis of a pre-wavelet basis. The frame operators of both bases are bijective on Lebesgue spaces. Both bases are also unconditional bases for Lebesgue spaces.
引用
收藏
页数:16
相关论文
共 36 条
[1]   Existence of unconditional wavelet packet bases for the spaces Lp (R) and H1 (R) [J].
Ahmad, Khalil ;
Kumar, Rakesh ;
Debnath, Lokenath .
TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (04) :851-863
[2]  
[Anonymous], 1992, CBMS-NSF Reg. Conf. Ser. in Appl. Math
[3]   A BLOCK SPIN CONSTRUCTION OF ONDELETTES .1. LEMARIE FUNCTIONS [J].
BATTLE, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (04) :601-615
[4]  
Battle G, 1992, WAVELETS TUTORIAL TH
[5]   Affine frames, GMRA's, and the canonical dual [J].
Bownik, M ;
Weber, E .
STUDIA MATHEMATICA, 2003, 159 (03) :453-479
[6]   The canonical and alternate duals of a wavelet frame [J].
Bownik, Marcin ;
Lemvig, Jakob .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 23 (02) :263-272
[7]   Wavelet Frame Bijectivity on Lebesgue and Hardy Spaces [J].
Bui, H. -Q. ;
Laugesen, R. S. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (02) :376-409
[8]  
Christensen O, 2003, INTRO FRAMES RIESZ B
[9]  
Chui C.K., 1994, ADV COMPUT MATH, P139
[10]   Orthonormal wavelets and tight frames with arbitrary real dilations [J].
Chui, CK ;
Shi, XL .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 9 (03) :243-264