Copper ions promote peroxidation of low density lipoprotein lipid by binding to histidine residues of apolipoprotein B100, but they are reduced at other sites on LDL

被引:48
作者
Wagner, P
Heinecke, JW
机构
[1] WASHINGTON UNIV, SCH MED, DIV ATHEROSCLEROSIS NUTR & LIPID RES, DEPT INTERNAL MED, ST LOUIS, MO 63110 USA
[2] WASHINGTON UNIV, SCH MED, DEPT MOL BIOL & PHARMACOL, ST LOUIS, MO 63110 USA
关键词
LDL oxidation; atherosclerosis; lipid peroxidation; metal binding; vitamin E;
D O I
10.1161/01.ATV.17.11.3338
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Oxidized LDL is implicated in the pathogenesis of atherosclerosis. A widely studied model for oxidation of the lipid in LDL involves Cu2+. Recent studies suggest that Cu2+ may be reduced to Cu1+ by alpha-tocopherol to initiate LDL lipid peroxidation. LDL demonstrates binding sites for Cu2+, but the nature of these binding sites, as well their role in promoting Cu2+ reduction and lipid peroxidation, has not been established. In the current studies, we used diethylpyrocarbonate (DEPC) to modify the histidine residues of apolipoprotein B100, the major protein in LDL. First, we demonstrated that histidine residues were preferentially modified by DEPC under our experimental conditions. Then we monitored the kinetics of Cu2+-promoted oxidation of LDL and DEPC-modified LDL. In both cases, the progress curve of lipid peroxidation exhibited a lag phase and a propagation phase. However, when LDL was modified with DEPC, the length of the lag phase was prolonged whereas the rate of lipid peroxidation during the propagation phase was lower. Studies with LDL oxidized by 2,2'-azobis (2-amidinopropane) hydrochloride and phosphatidylcholine liposomes oxidized with hydroxyl radical established that DEPC was not acting simply as a nonspecific inhibitor of lipid peroxidation. DEPC treatment of LDL almost completely inhibited its ability to bind Cu2+. These observations suggest that peroxidation of the lipids in LDL can proceed with normal kinetics only when Cu2+ binds preferentially to sites on apolipoprotein B100 that contain histidine residues. We also compared the kinetics of Cu2+ reduction in the absence and presence of DEPC. There was no effect of DEPC modification on either the rate or extent of Cu2+ reduction by LDL. Therefore LDL is likely to contain a second class of binding sites for Cu2+ that does not involve histidine residues. Thus, LDL appears to contain at least two classes of Cu2+-binding sites: histidine containing sites, which are responsible in part for promoting lipid peroxidation during the propagation phase, and sites at which Cu2+ is reduced without binding to histidine.
引用
收藏
页码:3338 / 3346
页数:9
相关论文
共 50 条
[1]   SIMULATION OF LIPID-PEROXIDATION IN LOW-DENSITY-LIPOPROTEIN BY A BASIC SKELETON OF REACTIONS [J].
ABUJA, PM ;
ESTERBAUER, H .
CHEMICAL RESEARCH IN TOXICOLOGY, 1995, 8 (05) :753-763
[2]   ENGINEERED METAL-BINDING PROTEINS - PURIFICATION TO PROTEIN FOLDING [J].
ARNOLD, FH ;
HAYMORE, BL .
SCIENCE, 1991, 252 (5014) :1796-1797
[3]   METAL-AFFINITY SEPARATIONS - A NEW DIMENSION IN PROTEIN PROCESSING [J].
ARNOLD, FH .
BIO-TECHNOLOGY, 1991, 9 (02) :151-156
[4]   The role of oxidized lipoproteins in atherogenesis [J].
Berliner, JA ;
Heinecke, JW .
FREE RADICAL BIOLOGY AND MEDICINE, 1996, 20 (05) :707-727
[5]   MINIMALLY MODIFIED LOW-DENSITY-LIPOPROTEIN STIMULATES MONOCYTE ENDOTHELIAL INTERACTIONS [J].
BERLINER, JA ;
TERRITO, MC ;
SEVANIAN, A ;
RAMIN, S ;
KIM, JA ;
BAMSHAD, B ;
ESTERSON, M ;
FOGELMAN, AM .
JOURNAL OF CLINICAL INVESTIGATION, 1990, 85 (04) :1260-1266
[6]   TOCOPHEROL-MEDIATED PEROXIDATION - THE PROOXIDANT EFFECT OF VITAMIN-E ON THE RADICAL-INITIATED OXIDATION OF HUMAN LOW-DENSITY-LIPOPROTEIN [J].
BOWRY, VW ;
STOCKER, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (14) :6029-6044
[7]  
BOWRY VW, 1995, J BIOL CHEM, V270, P56
[8]   A RECEPTOR-MEDIATED PATHWAY FOR CHOLESTEROL HOMEOSTASIS [J].
BROWN, MS ;
GOLDSTEIN, JL .
SCIENCE, 1986, 232 (4746) :34-47
[9]   EVIDENCE OF AN ESSENTIAL HISTIDINE RESIDUE IN THERMOLYSIN [J].
BURSTEIN, Y ;
WALSH, KA ;
NEURATH, H .
BIOCHEMISTRY, 1974, 13 (01) :205-210