Answer to an open problem proposed by R Metzler and J Klafter

被引:13
作者
Ren, Fu-Yao [1 ]
Liang, Jin-Rong
Qiu, Wei-Yuan
Xiao, Jian-Bin
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310037, Peoples R China
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 18期
关键词
D O I
10.1088/0305-4470/39/18/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a positive answer to the open problem proposed by R Metzler and J Klafter, it is proved that the asymptotic shape of the solution for a wide class of fractional Fokker-Planck equations is a stretched Gaussian for the initial condition being a pulse function in the homogeneous and heterogeneous fractal structures, whose mean square displacement behaves like <(Delta x)(2)(t)>similar to t(V) and <(Delta x)(2)(t)>similar to x(-theta)t(V)(0 < gamma < 1, -infinity < theta < +infinity), respectively.
引用
收藏
页码:4911 / 4919
页数:9
相关论文
共 34 条
[21]   ANOMALOUS STOCHASTIC PROCESSES IN THE FRACTIONAL DYNAMICS FRAMEWORK: FOKKER-PLANCK EQUATION, DISPERSIVE TRANSPORT, AND NON-EXPONENTIAL RELAXATION [J].
Metzler, Ralf ;
Klafter, Joseph .
ADVANCES IN CHEMICAL PHYSICS <D>, 2001, 116 :223-264
[22]   DIFFUSION ON FRACTALS [J].
OSHAUGHNESSY, B ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1985, 32 (05) :3073-3083
[23]   Fractional integrals and fractal structure of memory sets [J].
Qiu, WY ;
Lü, J .
PHYSICS LETTERS A, 2000, 272 (5-6) :353-358
[24]  
RE FY, 1996, PHYS LETT A, V219, P59
[25]   Fractional Fokker-Planck equation on heterogeneous fractal structures in external force fields and its solutions [J].
Ren, FY ;
Liang, JR ;
Qiu, WY ;
Xu, Y .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 326 (3-4) :430-440
[26]   Universality of stretched Gaussian asymptotic behaviour for the fractional Fokker-Planck equation in external force fields [J].
Ren, FY ;
Liang, JR ;
Qiu, WY ;
Xu, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (27) :7533-7543
[27]   Determination of diffusion kernel on fractals [J].
Ren, FY ;
Wang, XT ;
Liang, JR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (46) :9815-9825
[28]  
RISKEN H, 1989, FOKKERPLANCK EQUATIO
[29]   FRACTIONAL DIFFUSION EQUATION ON FRACTALS - 3-DIMENSIONAL CASE AND SCATTERING FUNCTION [J].
ROMAN, HE ;
GIONA, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08) :2107-2117
[30]  
SAMK SG, 1993, FRACTIONAL INTEGRALS