Answer to an open problem proposed by R Metzler and J Klafter

被引:13
作者
Ren, Fu-Yao [1 ]
Liang, Jin-Rong
Qiu, Wei-Yuan
Xiao, Jian-Bin
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310037, Peoples R China
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 18期
关键词
D O I
10.1088/0305-4470/39/18/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a positive answer to the open problem proposed by R Metzler and J Klafter, it is proved that the asymptotic shape of the solution for a wide class of fractional Fokker-Planck equations is a stretched Gaussian for the initial condition being a pulse function in the homogeneous and heterogeneous fractal structures, whose mean square displacement behaves like <(Delta x)(2)(t)>similar to t(V) and <(Delta x)(2)(t)>similar to x(-theta)t(V)(0 < gamma < 1, -infinity < theta < +infinity), respectively.
引用
收藏
页码:4911 / 4919
页数:9
相关论文
共 34 条
  • [1] Dissipation and fluctuation for a randomly kicked particle: Normal and anomalous diffusion
    Barkai, E
    Fleurov, V
    [J]. CHEMICAL PHYSICS, 1996, 212 (01) : 69 - 88
  • [2] Generalized Einstein relation: A stochastic modeling approach
    Barkai, E
    Fleurov, VN
    [J]. PHYSICAL REVIEW E, 1998, 58 (02) : 1296 - 1310
  • [3] Levy walks and generalized stochastic collision models
    Barkai, E
    Fleurov, VN
    [J]. PHYSICAL REVIEW E, 1997, 56 (06): : 6355 - 6361
  • [4] From continuous time random walks to the fractional Fokker-Planck equation
    Barkai, E
    Metzler, R
    Klafter, J
    [J]. PHYSICAL REVIEW E, 2000, 61 (01) : 132 - 138
  • [5] Fractional Fokker-Planck equation, solution, and application
    Barkai, E
    [J]. PHYSICAL REVIEW E, 2001, 63 (04):
  • [6] Fractional representation of Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (10) : 1929 - 1935
  • [7] Fractional (space-time) Fokker-Planck equation
    El-Wakil, SA
    Elhanbaly, A
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (06) : 1035 - 1040
  • [8] ANOMALOUS DIFFUSION ON PERCOLATING CLUSTERS
    GEFEN, Y
    AHARONY, A
    ALEXANDER, S
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (01) : 77 - 80
  • [9] FRACTIONAL DIFFUSION EQUATION FOR TRANSPORT PHENOMENA IN RANDOM-MEDIA
    GIONA, M
    ROMAN, HE
    [J]. PHYSICA A, 1992, 185 (1-4): : 87 - 97
  • [10] Gradshteyn Izrail Solomonovich, 2014, Table of Integrals, Series, andProducts, VEighth