Bias and priors in machine learning calibrations for high energy physics

被引:5
作者
Gambhir, Rikab [1 ,2 ]
Nachman, Benjamin [3 ,4 ]
Thaler, Jesse [1 ,2 ]
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] NSF AI Inst Artificial Intelligence & Fundamental, Cambridge, MA 02139 USA
[3] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
PP COLLISIONS; PERFORMANCE; IDENTIFICATION;
D O I
10.1103/PhysRevD.106.036011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Machine learning offers an exciting opportunity to improve the calibration of nearly all reconstructed objects in high-energy physics detectors. However, machine learning approaches often depend on the spectra of examples used during training, an issue known as prior dependence. This is an undesirable property of a calibration, which needs to be applicable in a variety of environments. The purpose of this paper is to explicitly highlight the prior dependence of some machine-learning-based calibration strategies. We demonstrate how some recent proposals for both simulation-based and data-based calibrations inherit properties of the sample used for training, which can result in biases for downstream analyses. In the case of simulation-based calibration, we argue that our recently proposed Gaussian Ansatz approach can avoid some of the pitfalls of prior dependence, whereas prior-independent data-based calibration remains an open problem.
引用
收藏
页数:16
相关论文
共 114 条
[11]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[12]   Recent developments in GEANT4 [J].
Allison, J. ;
Amako, K. ;
Apostolakis, J. ;
Arce, P. ;
Asai, M. ;
Aso, T. ;
Bagli, E. ;
Bagulya, A. ;
Banerjee, S. ;
Barrand, G. ;
Beck, B. R. ;
Bogdanov, A. G. ;
Brandt, D. ;
Brown, J. M. C. ;
Burkhardt, H. ;
Canal, Ph. ;
Cano-Ott, D. ;
Chauvie, S. ;
Cho, K. ;
Cirrone, G. A. P. ;
Cooperman, G. ;
Cortes-Giraldo, M. A. ;
Cosmo, G. ;
Cuttone, G. ;
Depaola, G. ;
Desorgher, L. ;
Dong, X. ;
Dotti, A. ;
Elvira, V. D. ;
Folger, G. ;
Francis, Z. ;
Galoyan, A. ;
Garnier, L. ;
Gayer, M. ;
Genser, K. L. ;
Grichine, V. M. ;
Guatelli, S. ;
Gueye, P. ;
Gumplinger, P. ;
Howard, A. S. ;
Hrivnacova, I. ;
Hwang, S. ;
Incerti, S. ;
Ivanchenko, A. ;
Ivanchenko, V. N. ;
Jones, F. W. ;
Jun, S. Y. ;
Kaitaniemi, P. ;
Karakatsanis, N. ;
Karamitrosi, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 :186-225
[13]   Nuisance hardened data compression for fast likelihood-free inference [J].
Alsing, Justin ;
Wandelt, Benjamin .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (04) :5093-5103
[14]   Neural networks for full phase-space reweighting and parameter tuning [J].
Andreassen, Anders ;
Nachman, Benjamin .
PHYSICAL REVIEW D, 2020, 101 (09)
[15]   Combine and conquer: event reconstruction with Bayesian Ensemble Neural Networks [J].
Araz, Jack Y. ;
Spannowsky, Michael .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
[16]  
ATLAS Collaboration, 2019, JINST, V14
[17]  
ATLAS Collaboration, 2016, EUR PHYS J C, V292, P76, DOI 10.1140/epjc/s10052-016-4120-y
[18]  
ATLAS Collaboration, 2018, ATLPHYSPUB2018013
[19]  
ATLAS Collaboration, 2019, ATLPHYSPUB2019028 CE
[20]  
ATLAS Collaboration, 2019, Eur. Phys. J. C, V79, P970, DOI DOI 10.1140/EPJC/S10052-019-7450-8