Bias and priors in machine learning calibrations for high energy physics

被引:5
作者
Gambhir, Rikab [1 ,2 ]
Nachman, Benjamin [3 ,4 ]
Thaler, Jesse [1 ,2 ]
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] NSF AI Inst Artificial Intelligence & Fundamental, Cambridge, MA 02139 USA
[3] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
PP COLLISIONS; PERFORMANCE; IDENTIFICATION;
D O I
10.1103/PhysRevD.106.036011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Machine learning offers an exciting opportunity to improve the calibration of nearly all reconstructed objects in high-energy physics detectors. However, machine learning approaches often depend on the spectra of examples used during training, an issue known as prior dependence. This is an undesirable property of a calibration, which needs to be applicable in a variety of environments. The purpose of this paper is to explicitly highlight the prior dependence of some machine-learning-based calibration strategies. We demonstrate how some recent proposals for both simulation-based and data-based calibrations inherit properties of the sample used for training, which can result in biases for downstream analyses. In the case of simulation-based calibration, we argue that our recently proposed Gaussian Ansatz approach can avoid some of the pitfalls of prior dependence, whereas prior-independent data-based calibration remains an open problem.
引用
收藏
页数:16
相关论文
共 114 条
  • [1] Aaboud M, 2019, EUR PHYS J C, V79, DOI 10.1140/epjc/s10052-019-6847-8
  • [2] Aad G, 2021, EUR PHYS J C, V81, DOI 10.1140/epjc/s10052-021-09402-3
  • [3] Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1
    Aad, G.
    Abbott, B.
    Abdallah, J.
    Abdinov, O.
    Aben, R.
    Abolins, M.
    AbouZeid, O. S.
    Abramowicz, H.
    Abreu, H.
    Abreu, R.
    Abulaiti, Y.
    Acharya, B. S.
    Adamczyk, L.
    Adams, D. L.
    Adelman, J.
    Adomeit, S.
    Adye, T.
    Affolder, A. A.
    Agatonovic-Jovin, T.
    Agricola, J.
    Aguilar-Saavedra, J. A.
    Ahlen, S. P.
    Ahmadov, F.
    Aielli, G.
    Akerstedt, H.
    Akesson, T. P.
    Akimov, A. V.
    Alberghi, G. L.
    Albert, J.
    Albrand, S.
    Alconada Verzini, M. J.
    Aleksa, M.
    Aleksandrov, I. N.
    Alexa, C.
    Alexander, G.
    Alexopoulos, T.
    Alhroob, M.
    Alimonti, G.
    Alio, L.
    Alison, J.
    Alkire, S. P.
    Allbrooke, B. M. M.
    Allport, P. P.
    Aloisio, A.
    Alonso, A.
    Alonso, F.
    Alpigiani, C.
    Altheimer, A.
    Gonzalez, B. Alvarez
    Alvarez Piqueras, D.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (07):
  • [4] Aad G, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3500-z
  • [5] Cosmic ray spectrum from 250 TeV to 10 PeV using IceTop
    Aartsen, M. G.
    Abbasi, R.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Ahrens, M.
    Alispach, C.
    Amin, N. M.
    Andeen, K.
    Anderson, T.
    Ansseau, I
    Anton, G.
    Arguelles, C.
    Auffenberg, J.
    Axani, S.
    Bagherpour, H.
    Bai, X.
    Balagopal V, A.
    Barbano, A.
    Barwick, S. W.
    Bastian, B.
    Baum, V
    Baur, S.
    Bay, R.
    Beatty, J. J.
    Becker, K-H
    Tjus, J. Becker
    BenZvi, S.
    Berley, D.
    Bernardini, E.
    Besson, D. Z.
    Binder, G.
    Bindig, D.
    Blaufuss, E.
    Blot, S.
    Bohm, C.
    Boser, S.
    Botner, O.
    Bottcher, J.
    Bourbeau, E.
    Bourbeau, J.
    Bradascio, F.
    Braun, J.
    Bron, S.
    Brostean-Kaiser, J.
    Burgman, A.
    Buscher, J.
    Busse, R. S.
    Carver, T.
    [J]. PHYSICAL REVIEW D, 2020, 102 (12)
  • [6] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [7] A convolutional neural network based cascade reconstruction for the IceCube Neutrino Observatory
    Abbasi, R.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Ahrens, M.
    Alispach, C.
    Alves, A. A., Jr.
    Amin, N. M.
    An, R.
    Andeen, K.
    Anderson, T.
    Ansseau, I
    Anton, G.
    Arguelles, C.
    Axani, S.
    Bai, X.
    Balagopal V, A.
    Barbano, A.
    Barwick, S. W.
    Bastian, B.
    Basu, V
    Baum, V
    Baur, S.
    Bay, R.
    Beatty, J. J.
    Becker, K-H
    Tjus, J. Becker
    Bellenghi, C.
    BenZvi, S.
    Berley, D.
    Bernardini, E.
    Besson, D. Z.
    Binder, G.
    Bindig, D.
    Blaufuss, E.
    Blot, S.
    Boeser, S.
    Botner, O.
    Boettcher, J.
    Bourbeau, E.
    Bourbeau, J.
    Bradascio, F.
    Braun, J.
    Bron, S.
    Brostean-Kaiser, J.
    Burgman, A.
    Busse, R. S.
    Campana, M. A.
    Chen, C.
    [J]. JOURNAL OF INSTRUMENTATION, 2021, 16 (07)
  • [8] GEANT4-a simulation toolkit
    Agostinelli, S
    Allison, J
    Amako, K
    Apostolakis, J
    Araujo, H
    Arce, P
    Asai, M
    Axen, D
    Banerjee, S
    Barrand, G
    Behner, F
    Bellagamba, L
    Boudreau, J
    Broglia, L
    Brunengo, A
    Burkhardt, H
    Chauvie, S
    Chuma, J
    Chytracek, R
    Cooperman, G
    Cosmo, G
    Degtyarenko, P
    Dell'Acqua, A
    Depaola, G
    Dietrich, D
    Enami, R
    Feliciello, A
    Ferguson, C
    Fesefeldt, H
    Folger, G
    Foppiano, F
    Forti, A
    Garelli, S
    Giani, S
    Giannitrapani, R
    Gibin, D
    Cadenas, JJG
    González, I
    Abril, GG
    Greeniaus, G
    Greiner, W
    Grichine, V
    Grossheim, A
    Guatelli, S
    Gumplinger, P
    Hamatsu, R
    Hashimoto, K
    Hasui, H
    Heikkinen, A
    Howard, A
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) : 250 - 303
  • [9] Akchurin N, 2022, Arxiv, DOI arXiv:2108.10963
  • [10] On the use of neural networks for energy reconstruction in high-granularity calorimeters
    Akchurin, N.
    Cowden, C.
    Damgov, J.
    Hussain, A.
    Kunori, S.
    [J]. JOURNAL OF INSTRUMENTATION, 2021, 16 (12)