Network control principles for identifying personalized driver genes in cancer

被引:32
作者
Guo, Wei-Feng [1 ]
Zhang, Shao-Wu [2 ]
Zeng, Tao [3 ,4 ]
Akutsu, Tatsuya [5 ]
Chen, Luonan [6 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, 127 Youyi West Rd, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Automat, Minist Educ, Key Lab Informat Fus Technol, Xian, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Biol Sci, Key Lab Syst Biol, Shanghai, Peoples R China
[4] Shanghai Res Ctr Brain Sci & Brain Inspired Intel, Shanghai, Peoples R China
[5] Kyoto Univ, Bioinformat Ctr, Inst Chem Res, Kyoto, Japan
[6] Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Ctr Excellence Mol Cell Sci, Inst Biochem & Cell Biol,Key Lab Syst Biol, Shanghai, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
personalized driver genes; single-sample network; network control principles; tumor heterogeneity; SOMATIC MUTATIONS; COMPLEX NETWORKS; EDGE DYNAMICS; SINGLE-CELL; REGULATORY NETWORKS; DIRECT CONVERSION; CONTROLLABILITY; FIBROBLASTS; DISCOVERY; PATHWAYS;
D O I
10.1093/bib/bbz089
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
To understand tumor heterogeneity in cancer, personalized driver genes (PDGs) need to be identified for unraveling the genotype-phenotype associations corresponding to particular patients. However,most of the existing driver-focus methods mainly pay attention on the cohort information rather than on individual information. Recent developing computational approaches based on network control principles are opening a new way to discover driver genes in cancer, particularly at an individual level. To provide comprehensive perspectives of network control methods on this timely topic, we first considered the cancer progression as a network control problem, in which the expected PDGs are altered genes by oncogene activation signals that can change the individual molecular network from one health state to the other disease state. Then, we reviewed the network reconstruction methods on single samples and introduced novel network control methods on single-sample networks to identify PDGs in cancer. Particularly, we gave a performance assessment of the network structure control-based PDGs identification methods on multiple cancer datasets from TCGA, for which the data and evaluation package also are publicly available. Finally, we discussed future directions for the application of network control methods to identify PDGs in cancer and diverse biological processes.
引用
收藏
页码:1641 / 1662
页数:22
相关论文
共 176 条
[1]  
Akutsu, 1998, Genome Inform Ser Workshop Genome Inform, V9, P151
[2]  
[Anonymous], 2013, PLOS ONE
[3]   Controllability in Cancer Metabolic Networks According to Drug Targets as Driver Nodes [J].
Asgari, Yazdan ;
Salehzadeh-Yazdi, Ali ;
Schreiber, Falk ;
Masoudi-Nejad, Ali .
PLOS ONE, 2013, 8 (11)
[4]  
Azmi AS, 2012, FUTURE MED CHEM, V4, P939, DOI [10.4155/FMC.12.44, 10.4155/fmc.12.44]
[5]   Analysis of Critical and Redundant Vertices in Controlling Directed Complex Networks Using Feedback Vertex Sets [J].
Bao, Yu ;
Hayashida, Morihiro ;
Liu, Pengyu ;
Ishitsuka, Masayuki ;
Nacher, Jose C. ;
Akutsu, Tatsuya .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (10) :1071-1090
[6]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[7]   DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer [J].
Bashashati, Ali ;
Haffari, Gholamreza ;
Ding, Jiarui ;
Ha, Gavin ;
Lui, Kenneth ;
Rosner, Jamie ;
Huntsman, David G. ;
Caldas, Carlos ;
Aparicio, Samuel A. ;
Shah, Sohrab P. .
GENOME BIOLOGY, 2012, 13 (12) :R124
[8]   Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles [J].
Bertrand, Denis ;
Chng, Kern Rei ;
Sherbaf, Faranak Ghazi ;
Kiesel, Anja ;
Chia, Burton K. H. ;
Sia, Yee Yen ;
Huang, Sharon K. ;
Hoon, Dave S. B. ;
Liu, Edison T. ;
Hillmer, Axel ;
Nagarajan, Niranjan .
NUCLEIC ACIDS RESEARCH, 2015, 43 (07)
[9]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[10]   Algorithmic methods to infer the evolutionary trajectories in cancer progression [J].
Caravagna, Giulio ;
Graudenzi, Alex ;
Ramazzotti, Daniele ;
Sanz-Pamplona, Rebeca ;
De Sano, Luca ;
Mauri, Giancarlo ;
Moreno, Victor ;
Antoniotti, Marco ;
Mishra, Bud .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (28) :E4025-E4034