Reactive Power Sharing and Voltage Harmonic Distortion Compensation of Droop Controlled Single Phase Islanded Microgrids

被引:212
作者
Micallef, Alexander [1 ]
Apap, Maurice [1 ]
Spiteri-Staines, Cyril [1 ]
Guerrero, Josep M. [2 ]
Vasquez, Juan C. [2 ]
机构
[1] Univ Malta, Dept Ind Elect Power Convers, Msd 2080, Malta
[2] Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark
关键词
Droop control; frequency restoration; harmonic compensation; microgrids; reactive power sharing; secondary control; voltage harmonics; voltage restoration; PARALLEL INVERTERS; CONTROL STRATEGY; SECONDARY CONTROL; IMPEDANCE; DESIGN; OPERATION; AC;
D O I
10.1109/TSG.2013.2291912
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When paralleling multiple inverters that are capable of operating as an island, the inverters typically employ the droop control scheme. Traditional droop control enables the decentralized regulation of the local voltage and frequency of the microgrid by the inverters. The droop method also enables the inverters to share the real and reactive power required by the loads. This paper focuses on some of the limitations of parallel islanded single phase inverters using droop control. Algorithms with the aim to address the following limitations in islanded operation were proposed: reactive power sharing and reduction of the voltage harmonic distortion at the point of common coupling (PCC). Experimental results were then presented to show the suitability of the proposed algorithms in achieving reactive power sharing and in improving the voltage harmonic distortion at the PCC.
引用
收藏
页码:1149 / 1158
页数:10
相关论文
共 31 条
[1]  
[Anonymous], 2003, IEEE 15472003
[2]  
[Anonymous], P 38 IEEE C IND EL S
[3]  
[Anonymous], P 19 IR C EL ENG
[4]   Overview of control and grid synchronization for distributed power generation systems [J].
Blaabjerg, Frede ;
Teodorescu, Remus ;
Liserre, Marco ;
Timbus, Adrian V. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2006, 53 (05) :1398-1409
[5]   A voltage and frequency droop control method for parallel inverters [J].
De Brabandere, Karel ;
Bolsens, Bruno ;
Van den Keybus, Jeroen ;
Woyte, Achim ;
Driesen, Johan ;
Belmans, Ronnie .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2007, 22 (04) :1107-1115
[6]   Output impendance design of parallel-connected UPS inverters with wireless load-sharing control [J].
Guerrero, JM ;
de Vicuña, LG ;
Matas, J ;
Castilla, M ;
Miret, J .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2005, 52 (04) :1126-1135
[7]   Control of distributed uninterruptible power supply systems [J].
Guerrero, Josep M. ;
Hang, Lijun ;
Uceda, Javier .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (08) :2845-2859
[8]   Decentralized control for parallel operation of distributed generation inverters using resistive output impedance [J].
Guerrero, Josep M. ;
Matas, Jose ;
Garcia de Vicuna, Luis ;
Castilla, Miguel ;
Miret, Jaume .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2007, 54 (02) :994-1004
[9]   Wireless-control strategy for parallel operation of distributed-generation inverters [J].
Guerrero, Josep M. ;
Matas, Jose ;
Garcia de Vicuna, Luis ;
Castilla, Miguel ;
Miret, Jaume .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2006, 53 (05) :1461-1470
[10]   Hierarchical Control of Droop-Controlled AC and DC Microgrids-A General Approach Toward Standardization [J].
Guerrero, Josep M. ;
Vasquez, Juan C. ;
Matas, Jose ;
Garci de Vicuna, Luis ;
Castilla, Miguel .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (01) :158-172