On hyperlogarithms and Feynman integrals with divergences and many scales

被引:61
作者
Panzer, Erik [1 ]
机构
[1] Humboldt Univ, Inst Phys & Math, D-10099 Berlin, Germany
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2014年 / 03期
关键词
Scattering Amplitudes; Renormalization Regularization and Renormalons; NUMERICAL EVALUATION; MULTILOOP INTEGRALS; MASTER INTEGRALS; ONE-LOOP;
D O I
10.1007/JHEP03(2014)071
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Hyperlogarithms provide a tool to carry out Feynman integrals in Schwinger parameters. So far, this method has been applied successfully mostly to finite single-scale processes. However, it can be employed in more general situations. We give examples of integrations of three- and four-point integrals in Schwinger parameters with non-trivial kinematic dependence, including setups with off-shell external momenta and differently massive internal propagators. The full set of Feynman graphs admissible to parametric integration is not yet understood and we discuss some counterexamples to the crucial property of linear reducibility. In special cases we observe how a change of variables can restore this prerequisite for direct integration and thereby enlarge the set of accessible graphs. Working in dimensional regularization, we furthermore clarify how a simple application of partial integration can be used to convert divergent parametric integrands to convergent ones. In contrast to the subtraction of counterterms, this scheme is ideally suited for our method of integration.
引用
收藏
页数:26
相关论文
共 44 条
  • [1] Ablinger J., 2012, POS, V270
  • [2] Massive 3-loop ladder diagrams for quarkonic local operator matrix elements
    Ablinger, Jakob
    Bluemlein, Johannes
    Hasselhuhn, Alexander
    Klein, Sebastian
    Schneider, Carsten
    Wissbrock, Fabian
    [J]. NUCLEAR PHYSICS B, 2012, 864 (01) : 52 - 84
  • [3] The two-loop sunrise graph with arbitrary masses
    Adams, Luise
    Bogner, Christian
    Weinzierl, Stefan
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)
  • [4] [Anonymous], ARXIV13026445
  • [5] [Anonymous], MAPL 16
  • [6] Numerical evaluation of multi-loop integrals by sector decomposition
    Binoth, T
    Heinrich, G
    [J]. NUCLEAR PHYSICS B, 2004, 680 (1-3) : 375 - 388
  • [7] An automatized algorithm to compute infrared divergent multi-loop integrals
    Binoth, T
    Heinrich, G
    [J]. NUCLEAR PHYSICS B, 2000, 585 (03) : 741 - 759
  • [8] Bloch S., ARXIV13095865
  • [9] Blumlein J., 2013, POS, V301
  • [10] BOGNER C, ARXIV13026215