LARGE DEVIATION PRINCIPLES FOR RANDOM WALK TRAJECTORIES. III

被引:11
作者
Borovkov, A. A. [1 ]
Mogulskii, A. A. [1 ]
机构
[1] SL Sobolev Inst Math SB RAS, Novosibirsk 630090, Russia
关键词
extended large deviation principle in the space of functions of bounded variation; local large deviation principle; integro-local Gnedenko and Stone-Shepp theorems; Sanov theorem; large deviations of empirical distributions;
D O I
10.1137/S0040585X97986370
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The present paper is a continuation of [Theory Probab. Appl., 57 (2013), pp. 1-27]. It consists of two sections. Section 6 presents results similar to those obtained in sections 4 and 5, but now in the space of functions of bounded variation with metric stronger than that of D. In section 7 we obtain the so-called conditional large deviation principles for the trajectories of univariate random walks with a localized terminal value of the walk. As a consequence, we prove a version of Sanov's theorem on large deviations of empirical distributions.
引用
收藏
页码:25 / 37
页数:13
相关论文
共 9 条
[1]  
Borovkov AA, 2013, THEOR PROBAB APPL+, V57, P1, DOI [10.1137/S0040585X97985765, 10.4213/tvp4430]
[2]   CHEBYSHEV-TYPE EXPONENTIAL INEQUALITIES FOR SUMS OF RANDOM VECTORS AND FOR TRAJECTORIES OF RANDOM WALKS [J].
Borovkov, A. A. ;
Mogulskii, A. A. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2012, 56 (01) :21-43
[3]  
Borovkov A A, 1992, LARGE DEVIATIONS TES
[4]   BOUNDARY-VALUE PROBLEMS FOR RANDOM WALKS AND LARGE DEVIATIONS IN FUNCTION SPACES [J].
BOROVKOV, AA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1967, 12 (04) :575-&
[5]   Large deviations for Markov chains in the positive quadrant [J].
Borovkov, AA ;
Mogul'skii, AA .
RUSSIAN MATHEMATICAL SURVEYS, 2001, 56 (05) :803-916
[6]  
Gnedenko B.V., 1948, Uspehi Matem. Nauk (N. S.), V3, P187
[7]  
Sanov I. N., 1957, Mat. Sbornik USSR, V84, P11
[8]   LOCAL LIMIT-THEOREM [J].
SHEPP, LA .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01) :419-+
[9]  
Stone C., 1967, 5 BERKELEY S, V2, P217