Coral-Shaped MoS2 Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction

被引:98
作者
Guo, Bangjun [1 ]
Yu, Ke [1 ]
Li, Honglin [1 ]
Qi, Ruijuan [1 ]
Zhang, Yuanyuan [1 ]
Song, Haili [1 ]
Tang, Zheng [1 ]
Zhu, Ziqiang [1 ]
Chen, Mingwei [2 ,3 ,4 ]
机构
[1] East China Normal Univ, Dept Elect Engn, Minist Educ China, Key Lab Polar Mat & Devices, Shanghai 200241, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200030, Peoples R China
[3] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[4] Japan Sci & Technol Agcy JST, CREST, Saitama 3320012, Japan
基金
美国国家科学基金会;
关键词
coral shape; monolayer molybdenum disulfide; graphene quantum dots; electrocatalysis; hydrogen evolution reaction; LAYER MOS2; ATOMIC THICKNESS; PHASE-TRANSITION; MONOLAYER MOS2; NANOSHEETS; CATALYSTS; DISULFIDE; CHEMISTRY; HYBRID; GROWTH;
D O I
10.1021/acsami.6b14035
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report a new CVD method to prepare coral-shaped monolayer MoS2 with a large amount of exposed edge sites for catalyzing hydrogen evolution reaction. The electrocatalytic activities of the coral-shaped MoS2 can be further enhanced by electronic band engineering via decorated with graphene quantum dot (GQD) decoration. Generally, GQDs improve the electrical conductivity of the MoS2 electrocatalyst. First-principles calculations suggest that the coral MoS2@GQD is a zero-gap material. The high electric conductivity and pronounced catalytically active sites give the hybrid catalyst outstanding electrocatalytic performance with a small onset overpotential of 95 mV and a low Tafel slope of 40 mV/dec as well as excellent long-term electrocatalytic stability. The present work provides a potential way to design two-dimensional hydrogen evolution reaction (HER) electrocatalysts through controlling the shape and modulating the electric conductivity.
引用
收藏
页码:3653 / 3660
页数:8
相关论文
共 58 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/NNANO.2015.40, 10.1038/nnano.2015.40]
[2]   2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition [J].
Ambrosi, Adriano ;
Sofer, Zdenek ;
Pumera, Martin .
CHEMICAL COMMUNICATIONS, 2015, 51 (40) :8450-8453
[3]   Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets [J].
Chen, Wei-Fu ;
Sasaki, Kotaro ;
Ma, Chao ;
Frenkel, Anatoly I. ;
Marinkovic, Nebojsa ;
Muckerman, James T. ;
Zhu, Yimei ;
Adzic, Radoslav R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (25) :6131-6135
[4]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[5]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[6]   Enhanced hydrogen evolution reaction on few-layer MoS2 nanosheets-coated functionalized carbon nanotubes [J].
Dai, Xiaoping ;
Du, Kangli ;
Li, Zhanzhao ;
Sun, Hui ;
Yang, Ying ;
Zhang, Wen ;
Zhang, Xin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (29) :8877-8888
[7]   Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2 [J].
Dhakal, Krishna P. ;
Dinh Loc Duong ;
Lee, Jubok ;
Nam, Honggi ;
Kim, Minsu ;
Kan, Min ;
Lee, Young Hee ;
Kim, Jeongyong .
NANOSCALE, 2014, 6 (21) :13028-13035
[8]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[9]   Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes [J].
Frey, GL ;
Reynolds, KJ ;
Friend, RH ;
Cohen, H ;
Feldman, Y .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (19) :5998-6007
[10]   Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production [J].
Gao, Min-Rui ;
Chan, Maria K. Y. ;
Sun, Yugang .
NATURE COMMUNICATIONS, 2015, 6